Skip to main content
Log in

Complex echo classification by echo-locating bats: a review

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Echo-locating bats constantly emit ultrasonic pulses and analyze the returning echoes to detect, localize, and classify objects in their surroundings. Echo classification is essential for bats’ everyday life; for instance, it enables bats to use acoustical landmarks for navigation and to recognize food sources from other objects. Most of the research of echo based object classification in echo-locating bats was done in the context of simple artificial objects. These objects might represent prey, flower, or fruit and are characterized by simple echoes with a single up to several reflectors. Bats, however, must also be able to use echoes that return from complex structures such as plants or other types of background. Such echoes are characterized by superpositions of many reflections that can only be described using a stochastic statistical approach. Scientists have only lately started to address the issue of complex echo classification by echo-locating bats. Some behavioral evidence showing that bats can classify complex echoes has been accumulated and several hypotheses have been suggested as to how they do so. Here, we present a first review of this data. We raise some hypotheses regarding possible interpretations of the data and point out necessary future directions that should be pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altes RA (1976) Sonar for generalized target description and its similarity to animal echolocation systems. J Acoust Soc Am 105:59–97

    Google Scholar 

  • Au WWL (1993) The sonar of Dolphins. Springer, New York

    Google Scholar 

  • Boonman A, Ostwald J (2007) A modeling approach to explain pulse design in bats. Biol Cybern 97:159–172

    Google Scholar 

  • Boonman AM, Parsons S, Jones G (2003) The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses. J Acoust Soc Am 113:617–628

    Article  PubMed  Google Scholar 

  • Borina F, Firzlaff U, Schuller G, Wiegrebe L (2008) Representation of echo roughness and its relationship to amplitude-modulation processing in the bat auditory midbrain. Eur J Neurosci 27:2724–2732

    Article  PubMed  Google Scholar 

  • Bradbury JW (1970) Target discrimination by the echolocating Bat Vampyrum Spectrum. J Exp Zool 173:23–46

    Article  PubMed  CAS  Google Scholar 

  • Firzlaff U, Schörnich S, Hoffmann S, Schuller G, Wiegrebe L (2006) A neural correlate of stochastic echo imaging. J Neurosci 26:785–791

    Article  PubMed  CAS  Google Scholar 

  • Firzlaff U, Schuchmann M, Grunwald JE, Schuller G, Wiegrebe L (2007) Object-oriented echo perception and cortical representation in echolocating bats. PLoS Biol 5:e100

    Article  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhiliali M, Klein D (2003) Rapid task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven

    Google Scholar 

  • Griffin DR (1967) Discriminative echolocation by bats in animal sonar systems biology and bionics. In: Busnel RG (ed) Laboratoire de Physiologie Acoustique. Jouyen-Josas, France, pp 273–300

    Google Scholar 

  • Griffin DR, Friend JH, Webster FA (1965) Target discrimination by the echolocation of bats. J Exp Zool 158:155–168

    Article  PubMed  CAS  Google Scholar 

  • Grothe B, Covey E, Casseday JH (2001) Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains. J Neurophysiol 86:2219–2230

    PubMed  CAS  Google Scholar 

  • Grunwald JE, Schornich S, Wiegrebe L (2004) Classification of natural textures in echolocation. Proc Natl Acad Sci USA 101:5670–5674

    Article  PubMed  CAS  Google Scholar 

  • Habersetzer J, Vogler B (1983) Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. J Comp Physiol A 152:275–282

    Article  Google Scholar 

  • Holderied MW, von Helversen O (2006) ‘Binaural echo disparity’ as a potential indicator of object orientation and cue for object recognition in echolocating nectar- feeding bats. J Exp Biol 209:3457–3468

    Article  PubMed  Google Scholar 

  • Holderied MW, Jones G, von Helversen O (2006) Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for ‘acoustic focussing’. J Exp Biol 209:1816–1826

    Article  PubMed  Google Scholar 

  • Kalko EKV, Condon MA (1998) Olfaction and fruit display: how bats find fruit of flagellichorous cucurbits. Funct Ecol 12:364–372

    Article  Google Scholar 

  • Kober R, Schnitzler H-U (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:882–896

    Article  Google Scholar 

  • Konstantinov AI, Akhmarova NI (1968) Discrimination of targets by echolocation in Myotis oxygnathus. J Biol Sci Moscow Univ 4:22–28

    Google Scholar 

  • Levin E, Yom-Tov Y, Barnea A (2009) Frequent summer nuptial flights of ants provide a primary food source for bats. Naturwissenschaften 96:477–483

    Article  PubMed  CAS  Google Scholar 

  • Matsuo I, Kunugiyama K, Yano M (2004) An echolocation model for range discrimination of multiple closely spaced objects: transformation of spectrogram into the reflected intensity distribution. J Acoust Soc Am 115:920–928

    Article  PubMed  Google Scholar 

  • McDermott JH, Oxenham AJ, Simoncelli E (2009) Sound texture synthesis via filter statistics. Workshop on applications of signal processing to audio and acoustics. Mohonk, NY

    Google Scholar 

  • McKerrow P, Harper N (2001) Plant acoustic density profile model of CTFM. Ultrasonic sensing IEEE sensors J, pp 245–255

  • Mogdans J, Schnitzler H-U, Ostwald J (1993) Discrimination of two-wavefront echoes by the big brown bat, Eptesicus fuscus: behavioral experiments and receiver simulations. J Comp Physiol A 172:309–323

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Schnitzler H-U (1995) Behavioral studies of auditory information processing. Springer, Berlin

    Google Scholar 

  • Moss CF, Surlykke A (2001) Auditory scene analysis in echolocating in bats. J Acoust Soc Am 110:2207–2226

    Article  PubMed  CAS  Google Scholar 

  • Müller R (2003) A computational theory for the classification of natural biosonar targets based on a spike code. Comput Neural Syst 14:595–612

    Article  Google Scholar 

  • Müller R, Kuc R (2000) Foliage echoes: a probe into the ecological acoustics of bat echolocation. J Acoust Soc Am 108:836–845

    Article  PubMed  Google Scholar 

  • Ostwald J, Schnitzler H-U, Schuller G (1998) Target discrimination and target classification in echolocating bats. Plenum Press, New York

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Patterson RD (1994) The sound of a sinusoid: spectralmodels. J Acoust Soc Am 96:1409–1418

    Article  Google Scholar 

  • Peremans H, Hallam J (1998) The spectrogram correlation and transformation receiver, revisited. J Acoust Soc Am 104:1101–1110

    Article  PubMed  CAS  Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 309–353

    Google Scholar 

  • Saillant PA, Simmons JA, Dear SP, McMullen TA (1993) A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94:2691–2712

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MI, Simmons JA (2000) Neural responses to overlapping FM sounds in the inferior colliculus of echolocating bats. J Neurophysiol 83(4):1840–1855

    Google Scholar 

  • Sanderson MI, Neretti N, Simmons JA (2003) Evaluation of an auditory model for echo delay accuracy in wideband biosonar. J Acoust Soc Am 114:1648–1659

    Article  PubMed  Google Scholar 

  • Schmidt S (1988) Evidence for a spectral basis of texture perception in bat sonar. Nature 331:617–619

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S (1992) Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91:2203–2223

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Hanke S, Pillat J (2000) The role of echolocation in the hunting of terrestrial prey—new evidence for an underestimated strategy in the gleaning bat Megaderma lyra. J Comp Physiol A 186:975–988

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U, Henson OW (1980) Performance of aiborne animal sonar systems: I. Microchiroptera. Plenum Press, New York

    Google Scholar 

  • Schnitzler H-U, Menne D, Kober R, Heblich D (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology: roots and growing points, pp 235–250

  • Schnitzler H-U, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evolut 18:386–394

    Article  Google Scholar 

  • Schörnich S, Wiegrebe L (2008) Phase sensitivity in bat sonar revisited. J Comp Physiol A 194:61–67

    Article  Google Scholar 

  • Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 155:121–128

    Article  Google Scholar 

  • Simmons JA, Chen L (1989) The acoustic basis for target discrimination by FM echolocating bats. J Acoust Soc Am 86:1333–1350

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Vernon JA (1971) Echolocation: discrimination of targets by the bat, Eptesicus fuscus. J Exp Zool 176:315–328

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Lavender WA, Lavender BA, Doroshow CA, Kiefer SW, Livingston R, Scallet AC, Crowley DE (1974) Target structure and echo spectral discrimination by echolocating bats. Science 186:1130–1132

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Ferragamo M, Moss CF, Stevenson SB, Altes RA (1990a) Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation. J Comp Physiol A 167:589–616

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Moss CF, Ferragamo M (1990b) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 166:449–470

    PubMed  CAS  Google Scholar 

  • Simon R, Holderied MW, von Helversen O (2006) Size discrimination of hollow hemispheres by echolocation in a nectar feeding bat. J Exp Biol 209:3599–3609

    Article  PubMed  Google Scholar 

  • Skolnik Ml (2001) Introduction to RADAR systems. Mcgraw-Hill, New York

    Google Scholar 

  • Smith DR, Patterson RD, Turner R, Kawahara H, Irino T (2005) The processing and perception of size information in speech sounds. J Acoust Soc Am 117:305–318

    Article  PubMed  Google Scholar 

  • Stilz P (2004) Akustische untersuchungen zur echoortung bei fledermauesen. Tier Phisiologie. University of Tuebingen. http://www.biosonarlab.uni-tuebingen.de/public/diss-stilz/diss.pdf

  • Sum YW, Menne D (1988) Discrimination of fluttering targets by the FM-bat Pipistrellus stenopterus? J Comp Physiol A 163:349–354

    Article  Google Scholar 

  • Thies W, Kalko EKV, Schnitzler H-U (1998) The roles of echolocation and olfaction in two neotropical fruit-eating bats, Carollia perpiscillata and C. castanea, feeding on piper. Behav Ecol Sociobiol 42:397–409

    Article  Google Scholar 

  • Ulanovsky N, Moss CF (2008) What the bat’s voice tells the bat’s brain. Proc Natl Acad Sci USA 105:8491–8498

    Article  PubMed  CAS  Google Scholar 

  • von Helversen D (2004) Object classification by echolocation in nectar feeding bats: size-independent generalization of shape. J Comp Physiol A 190:515–521

    Article  Google Scholar 

  • von Helversen D, von Helversen O (2003) Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:327–336

    Google Scholar 

  • von Stebut B, Schmidt S (2001) Frequency discrimination threshold at search call frequencies in the echolocating bat Eptesicus fuscus. J Comp Physiol A 187:287–291

    Article  Google Scholar 

  • Webster FA, Brazier OG (1965) Experimental studies on target detection, evaluation and interception by echolocating bats. Springfield, VA

  • Weissenbacher P, Wiegrebe L (2003) Classification of virtual objects in the echolocating bat Megaderma lyra. Behav Neurosci 117:833–839

    Article  PubMed  Google Scholar 

  • Weissenbacher P, Wiegrebe L, Kössl M (2002) The effect of preceding sonar emission on temporal integration in the bat Megaderma lyra. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(2):147–155

    Google Scholar 

  • Wiegrebe L (2008) An autocorrelation model of bat sonar. Biol Cybern 98:587–595

    Article  PubMed  Google Scholar 

  • Yovel Y, Franz MO, Stilz P, Schnitzler HU (2008) Plant classification from bat-like echolocation signals. PLoS Comput Biol 4:e1000032

    Article  PubMed  Google Scholar 

  • Yovel Y, Stilz P, Franz MO, Boonman A, Schnitzler H-U (2009) What a plant sounds like: the statistics of vegetation echoes as received by echolocating bats. PLoS Comput Biol 5:e1000429

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Boonman for the fruitful discussion and our two anonymous reviewers for their comments. This work was funded by SFB 550, by the Graduiertenkolleg Neurobiologie, and by grant SCHN 138/27-1 of the German Science Foundation. The work was also supported by the University of Applied Sciences at Konstanz, Germany. This work was also supported by the human resources and mobility activity Marie Curie host fellowships for early stage research training under contract MEST-CT-2004-504321 PERACT by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Yovel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yovel, Y., Franz, M.O., Stilz, P. et al. Complex echo classification by echo-locating bats: a review. J Comp Physiol A 197, 475–490 (2011). https://doi.org/10.1007/s00359-010-0584-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0584-7

Keywords

Navigation