Skip to main content

Advertisement

Log in

Pheromones in birds: myth or reality?

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Birds are anosmic or at best microsmatic… This misbelief persisted until very recently and has strongly influenced the outcome of communication studies in birds, with olfaction remaining neglected as compared to acoustic and visual channels. However, there is now clear empirical evidence showing that olfaction is perfectly functional in birds and birds use olfactory information in a variety of ethological contexts. Although the existence of pheromones has never been formally demonstrated in this vertebrate class, different groups of birds, such as petrels, auklets and ducks have been shown to produce specific scents that could play a significant role in within-species social interactions. Behavioral experiments have indeed demonstrated that these odors influence the behavior of conspecifics. Additionally, in quail, deprivation of olfactory inputs decreases neuronal activation induced by sexual interactions with a female. It seems therefore well established that birds enjoy a functional sense of smell and a fast growing body of experimental evidence suggests that they use this channel of olfactory communication to control their social life. The unequivocal identification of an avian pheromone is, however, still ahead of us but there are now many exciting opportunities to unravel the behavioral and physiological particularities of chemical communication in birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Amyl acetate

BSTM:

Bed nucleus of the stria terminalis, medial part

DMS:

Dimethyl sulfide

EA:

Ethyl acrylate

MHC:

Major histocompatibility complex

OR:

Olfactory receptors

POA:

Preoptic area

References

  • Amo L, Galvan I, Tomas G, Sanz JJ (2008) Predator odour recognition and avoidance in a songbird. Funct Ecol 22:289–293

    Article  Google Scholar 

  • Ball GF, Balthazart J (2002) Neuroendocrine mechanisms regulating reproductive cycles and reproductive behavior in birds. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, pp 649–798

    Chapter  Google Scholar 

  • Ball GF, Tlemçani O, Balthazart J (1997) Induction of the Zenk protein after sexual interactions in male Japanese quail. Neuroreport 8:2965–2970

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Absil P (1997) Identification of catecholaminergic inputs to and outputs from aromatase-containing brain areas of the Japanese quail by tract tracing combined with tyrosine hydroxylase immunocytochemistry. J Comp Neurol 382:401–428

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schoffeniels E (1979) Pheromones are involved in the control of sexual-behavior in birds. Naturwissenschaften 66:55–56

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Taziaux M (2009) The underestimated role of olfaction in avian reproduction? Behav Brain Res 200:248–259

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Absil P, Gérard M, Appeltants D, Ball GF (1998) Appetitive and consummatory male sexual behavior in Japanese quail are differentially regulated by subregions of the preoptic medial nucleus. J Neurosci 18:6512–6527

    PubMed  CAS  Google Scholar 

  • Bang BG (1960) Anatomical evidence for olfactory function in some species of bird. Nature 4750:547–549

    Article  Google Scholar 

  • Bang BG (1966) Olfactory apparatus of tubenosed birds. Acta Anat 65:391

    Article  PubMed  CAS  Google Scholar 

  • Bang BG, Cobb S (1968) The size of the olfactory bulb in 108 species of birds. Auk 85:56–61

    Google Scholar 

  • Benvenuti S, Ioale P, Massa B (1993) Olfactory experiments on cory shearwater (Calonectris diomedea): the effect of intranasal zinc sulphate treatment on short-range homing behaviour. Boll Zool 60:207–210

    Google Scholar 

  • Bingman VP, Casini G, Nocjar C, Jones T-J (1994) Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. Brain Behav Evol 43:206–218

    Article  PubMed  CAS  Google Scholar 

  • Bohnet S, Rogers L, Sasaki G, Kolattukudy PE (1991) Estradiol induces proliferation of peroxisome-like microbodies and the production of 3-hydroxy fatty acid diesters, the female pheromones, in the uropygial glands of male and female mallards. J Biol Chem 266:9795–9804

    PubMed  CAS  Google Scholar 

  • Bonadonna F (2009) Olfaction in petrels: from homing to self-odor avoidance. Ann NY Acad Sci 1170:428–433

    Article  PubMed  Google Scholar 

  • Bonadonna F, Bretagnolle V (2002) Smelling home: a good solution for burrow-finding in nocturnal petrels? J Exp Biol 205:2519–2523

    PubMed  Google Scholar 

  • Bonadonna F, Mardon J (2010) One house two families: petrel squatters get a sniff of low-cost breeding opportunities. Ethology 116:176–182

    Article  Google Scholar 

  • Bonadonna F, Nevitt GA (2004) Partner-specific odor recognition in an Antarctic seabird. Science 306:835

    Article  PubMed  CAS  Google Scholar 

  • Bonadonna F, Spaggiari J, Weimerskirch H (2001) Could osmotaxis explain the ability of blue petrels to return to their burrows at night? J Exp Biol 204:1485–1489

    PubMed  CAS  Google Scholar 

  • Bonadonna F, Cunningham GB, Jouventin P, Hesters F, Nevitt GA (2003a) Evidence for nest-odour recognition in two species of diving petrel. J Exp Biol 206:3719–3722

    Article  PubMed  Google Scholar 

  • Bonadonna F, Hesters F, Jouventin P (2003b) Scent of a nest: discrimination of own-nest odours in Antarctic prions, Pachyptila desolata. Behav Ecol Sociobiol 54:174–178

    Google Scholar 

  • Bonadonna F, Caro SP, Jouventin P, Nevitt GA (2006) Evidence that blue petrel, Halobaena caerulea, fledglings can detect and orient to dimethyl sulfide. J Exp Biol 209:2165–2169

    Article  PubMed  CAS  Google Scholar 

  • Bonadonna F, Miguel E, Grosbois V, Jouventin P, Bessiere JM (2007) Individual odor recognition in birds: an endogenous olfactory signature on petrels’ feathers? J Chem Ecol 33:1819–1829

    Article  PubMed  CAS  Google Scholar 

  • Bonadonna F, Caro SP, Brooke ML (2009) Olfactory sex recognition investigated in Antarctic prions. PLoS ONE 4:e4148

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G (2006) Complex MHC-based mate choice in a wild passerine. Proc R Soc B Biol Sci 273:1111–1116

    Article  CAS  Google Scholar 

  • Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    Article  PubMed  CAS  Google Scholar 

  • Burne THJ, Rogers LJ (1996) Responses to odorants by the domestic chick. Physiol Behav 60:1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Charlier TD, Ball GF, Balthazart J (2005) Sexual behavior activates the expression of the immediate early genes c-fos and Zenk (egr-1) in catecholaminergic neurons of male Japanese quail. Neuroscience 131:13–30

    Article  PubMed  CAS  Google Scholar 

  • Clark L, Avilova KV, Bean NJ (1993) Odor thresholds in passerines. Comp Biochem Physiol 104A:305–312

    Article  Google Scholar 

  • Cunningham GB, Van Buskirk RW, Bonadonna F, Weimerskirch H, Nevitt GA (2003) A comparison of the olfactory abilities of three species of procellariiform chicks. J Exp Biol 206:1615–1620

    Article  PubMed  Google Scholar 

  • Cunningham SJ, Castro I, Potter MA (2009) The relative importance of olfaction and remote touch in prey detection by North Island brow kiwis. Anim Behav 78:899–905

    Article  Google Scholar 

  • Davis RG (1973) Olfactory pyschophysical parameters in man, rat, dog, and pigeon. J Comp Physiol Psychol 85:221–232

    Article  PubMed  CAS  Google Scholar 

  • De Leon A, Minguez E, Belliure B (2003) Self-odour recognition in European storm-petrel chicks. Behaviour 140:925–933

    Article  Google Scholar 

  • del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the birds of the world, vol 1. Lynx Edition, Barcelona

    Google Scholar 

  • Douglas HD (2006) Measurement of chemical emissions in crested auklets (Aethia cristatella). J Chem Ecol 32:2559–2567

    Article  PubMed  CAS  Google Scholar 

  • Douglas HD (2008a) Prenuptial perfume: alloanointing in the social rituals of the crested auklet (Aethia cristatella) and the transfer of arthropod deterrents. Naturwissenschaften 95:45–53

    Article  PubMed  CAS  Google Scholar 

  • Douglas HD (2008b) In defense of chemical defense: Quantification of volatile chemicals in feathers is challenging. Auk 125:496–497

    Article  Google Scholar 

  • Douglas HD, Co JE, Jones TH, Conner WE (2001) Heteropteran chemical repellents identified in the citrus odor of a seabird (crested auklet: Aethia cristatella): evolutionary convergence in chemical ecology. Naturwissenschaften 88:330–332

    Article  PubMed  CAS  Google Scholar 

  • Douglas HD, Co JE, Jones TH, Conner WE (2004) Interspecific differences in Aethia spp. auklet odorants and evidence for chemical defense against ectoparasites. J Chem Ecol 30:1921–1935

    Article  PubMed  CAS  Google Scholar 

  • Douglas HD, Co JE, Jones TH, Conner WE, Day JF (2005a) Chemical odorant of colonial seabird repels mosquitoes. J Med Entomol 42:647–651

    Article  PubMed  CAS  Google Scholar 

  • Douglas HD, Malenke JR, Clayton DH (2005b) Is the citrus-like plumage odorant of Crested Auklets (Aethia cristatella) a defense against lice? J Ornithol 146:111–115

    Article  Google Scholar 

  • Douglas HD, Kitaysky AS, Kitaiskaia EV (2008) Seasonal covariation in progesterone and odorant emissions among breeding crested auklets (Aethia cristatella). Horm Behav 54:325–329

    Article  PubMed  CAS  Google Scholar 

  • Edinger L (1908) The relations of comparative anatomy to comparative psychology. J Comp Neurol Psychol 18:434–457

    Article  Google Scholar 

  • Edwards SV, Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian Mhc genes revealed by class II B sequences from songbirds. Proc Natl Acad Sci USA 92:12200–12204

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Mazzotto M, Bingman VP (1997) Piriform cortex ablations block navigational map learning in homing pigeons. Behav Brain Res 86:143–148

    Article  PubMed  CAS  Google Scholar 

  • Gagliardo A, Pecchia T, Savini M, Odetti F, Ioale P, Vallortigara G (2007) Olfactory lateralization in homing pigeons: initial orientation of birds receiving a unilateral olfactory input. Eur J Neurosci 25:1511–1516

    Article  PubMed  Google Scholar 

  • Gomez G, Celii A (2008) The peripheral olfactory system of the domestic chicken: physiology and development. Brain Res Bull 76:208–216

    Article  PubMed  CAS  Google Scholar 

  • Gomez LG, Houston DC, Cotton P, Tye A (1994) The role of greater yellow-headed vultures Cathartes melambrotus as scavengers in neotropical forest. Ibis 136:193–196

    Article  Google Scholar 

  • Grassé P (1950) Traité de zoologie, vol 15. Masson, Paris

    Google Scholar 

  • Graves GR (1992) Greater yellow-headed vulture (Cathartes melambrotus) locates food by olfaction. J Raptor Res 26:38–39

    Google Scholar 

  • Grubb TC (1972) Smell and foraging in shearwaters and petrels. Nature 237:404–405

    Article  Google Scholar 

  • Grubb TC (1973) Colony location by Leach’s petrel. Auk 90:78–82

    Google Scholar 

  • Grubb TC (1974) Olfactory navigation to the nesting burrow in Leaches petrel Oceanodroma leucorrhoa. Anim Behav 22:192–202

    Article  PubMed  Google Scholar 

  • Grubb TC (1979) Olfactory guidance of Leach’s storm petrel to the breeding island. Wilson Bull 91:141–143

    Google Scholar 

  • Hagelin JC (2007a) Odors and chemical signaling. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds. Science Publishers, Enfield (NH) Jersey Plymouth, pp 75–119

    Google Scholar 

  • Hagelin JC (2007b) The citrus-like scent of crested auklets: reviewing the evidence for an avian olfactory ornament. J Ornithol 148:S195–S201

    Article  Google Scholar 

  • Hagelin JC (2008) New data and new questions for crested auklet research. Auk 125:497–498

    Article  Google Scholar 

  • Hagelin JC, Jones IL (2007) Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication? Auk 124:741–761

    Article  Google Scholar 

  • Hagelin JC, Jones IL, Rasmussen LEL (2003) A tangerine-scented social odour in a monogamous seabird. Proc Roy Soc Lond B Biol Sci 270:1323–1329

    Article  Google Scholar 

  • Heth G, Todrank J, Johnston RE (1998) Kin recognition in golden hamsters: evidence for phenotype matching. Anim Behav 56:409–417

    Article  PubMed  Google Scholar 

  • Hirao A, Aoyama M, Sugita S (2008) The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav Process 80:115–120

    Article  Google Scholar 

  • Houston DC (1986) Scavenging efficiency of turkey vultures in tropical forest. Condor 88:318–323

    Article  Google Scholar 

  • Hunter FM, Jones IL (1999) The frequency and function of aquatic courtship and copulation in least, crested, whiskered, and parakeet auklets. Condor 101:518–528

    Article  Google Scholar 

  • Hutchison LV, Wenzel BM (1980) Olfactory guidance in foraging by procellariiforms. Condor 82:314–319

    Article  Google Scholar 

  • Hutton RS, Wenzel BM, Baker T, Homuth M (1974) Two-way avoidance learning in pigeons after olfactory nerve section. Physiol Behav 13:57–62

    Article  PubMed  CAS  Google Scholar 

  • Jacob J, Balthazart J, Schoffeniels E (1979) Sex differences in the chemical composition of uropygial gland waxes in domestic ducks. Biochem Syst Ecol 7:149–153

    Article  CAS  Google Scholar 

  • Johansson BG, Jones TM (2007) The role of chemical communication in mate choice. Biol Rev 82:265–289

    Article  PubMed  Google Scholar 

  • Johnston RE (2003) Chemical communication in rodents: from pheromones to individual recognition. J Mammal 84:1141–1162

    Article  Google Scholar 

  • Jones IL (1993) Crested auklet (Aethia cristatella). In: Poole A, Gill F (eds) The birds of North America. The Academy of Natural Sciences, The American Ornithologist’s Union, Philadelphia, Washington, DC

    Google Scholar 

  • Jones IL, Hunter FM (1993) Mutual sexual selection in a monogamous seabird. Nature 362:238–239

    Article  Google Scholar 

  • Jones RB, Roper TJ (1997) Olfaction in the domestic fowl: a critical review. Physiol Behav 62:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Jones IL, Hagelin JC, Major HL, Rasmussen LEL (2004) An experimental field study of the function of crested auklet feather odor. Condor 106:71–78

    Article  Google Scholar 

  • Jorge PE, Marques PAM, Phillips JB (2010) Activational effects of odours on avian navigation. Proc Roy Soc B Biol Sci 277:45–49

    Article  Google Scholar 

  • Jouventin P, Mouret V, Bonadonna F (2007) Wilson’s storm petrels Oceonites oceonicus recognise the olfactory signature of their mate. Ethology 113:1228–1232

    Article  Google Scholar 

  • Karlson P, Lüscher M (1959) Pheromones—new term for a class of biologically active substances. Nature 183:55–56

    Article  PubMed  CAS  Google Scholar 

  • Kenshalo DRJ, Isaac W (1977) Informational and arousal properties of olfaction. Physiol Behav 6:1085–1087

    Article  Google Scholar 

  • Keverne EB (2004) Importance of olfactory and vomeronasal systems for male sexual function. Physiol Behav 83:177–187

    PubMed  CAS  Google Scholar 

  • Leclaire S, Mulard H, Wagner RH, Hatch SA, Danchin E (2009) Can kittiwakes smell? Experimental evidence in a larid species. Ibis 151:584–587

    Article  Google Scholar 

  • Macadar AW, Rausch LJ, Wenzel BM, Hutchison LV (1980) Electrophysiology of the olfactory pathway in the pigeon. J Comp Physiol A 137:39–46

    Article  Google Scholar 

  • Mardon J, Bonadonna F (2009) Atypical homing or self-odour avoidance? Blue petrels (Halobaena caerulea) are attracted to their mate’s odour but avoid their own. Behav Ecol Sociobiol 63:537–542

    Article  Google Scholar 

  • Mardon J, Saunders SM, Anderson MJ, Couchoux C, Bonadonna F (2010) Species, gender, and identity: cracking petrels’ sociochemical code. Chem Senses. doi:10.1093/chemse/bjq021

  • Marples NM, Roper TJ (1996) Effects of novel colour and smell on the response of naive chicks towards food and water. Anim Behav 51:1417–1424

    Article  Google Scholar 

  • Marshall JC (1961) Biology and comparative physiology of birds. Academic Press, New York

    Google Scholar 

  • Mateo JM, Johnston RE (2000) Kin recognition and the ‘armpit effect’: evidence of self-referent phenotype matching. Proc Roy Soc Lond B Biol Sci 267:695–700

    Article  CAS  Google Scholar 

  • McKeegan DE, Lippens N (2003) Adaptation responses of single avian olfactory bulb neurones. Neurosci Lett 344:83–86

    Article  PubMed  CAS  Google Scholar 

  • McKeegan DE, Demmers TG, Wathes CM, Jones RB, Gentle MJ (2002) Stimulus-response functions of single avian olfactory bulb neurones. Brain Res 953:101–111

    Article  PubMed  CAS  Google Scholar 

  • Mello CV, Vicario DS, Clayton DF (1992) Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci USA 89:6818–6822

    Article  PubMed  CAS  Google Scholar 

  • Meredith M (2001) Human vomeronasal organ function: a critical review of best and worst cases. Chem Senses 26:433–445

    Article  PubMed  CAS  Google Scholar 

  • Miller L (1942) Some tagging experiments with Black-footed albatrosses. Condor 44:3–9

    Article  Google Scholar 

  • Mills AD, Crawford LL, Domjan M, Faure JM (1997) The behavior of the Japanese or domestic quail Coturnix japonica. Neurosci Biobehav Rev 21:261–281

    Article  PubMed  CAS  Google Scholar 

  • Minguez E (1997) Olfactory nest recognition by British storm-petrel chicks. Anim Behav 53:701–707

    Article  Google Scholar 

  • Nevitt GA (2000) Olfactory foraging by Antarctic procellariiform seabirds: life at high Reynolds numbers. Biol Bull 198:245–253

    Article  PubMed  CAS  Google Scholar 

  • Nevitt GA (2008) Sensory ecology on the high seas: the odor world of the procellariiform seabirds. J Exp Biol 211:1706–1713

    Article  PubMed  Google Scholar 

  • Nevitt GA, Veit RR, Kareiva P (1995) Dimethyl sulfide as a foraging cue for Antarctic procellariiform seabirds. Nature 376:680–682

    Article  CAS  Google Scholar 

  • Nevitt GA, Reid K, Trathan P (2004) Testing olfactory foraging strategies in an Antarctic seabird assemblage. J Exp Biol 207:3537–3544

    Article  PubMed  Google Scholar 

  • O’Dwyer TW, Nevitt GA (2009) Individual odor recognition in procellariiform chicks potential role for the major histocompatibility complex. Int Symp Olfact Taste 1170:442–446

    Google Scholar 

  • Papi F (1982) Olfaction and homing in pigeons: ten years of experiments. In: Papi F, Wallraff HG (eds) Avian navigation. Springer, Heidelberg, pp 149–159

    Google Scholar 

  • Papi F (1989) Pigeons use olfactory cues to navigate. Ethol Ecol Evol 1:219–231

    Article  Google Scholar 

  • Papi F (1990) Olfactory navigation in birds. Experientia 46:352–363

    Article  Google Scholar 

  • Papi F, Casini G (1990) Pigeons with ablated pyriform cortex home from familiar but not from unfamiliar sites. Proc Natl Acad Sci USA 87:3783–3787

    Article  PubMed  CAS  Google Scholar 

  • Papi F, Fiore L, Fiaschi V, Benvenuti S (1972) Olfaction and homing in pigeons. Monit Zool Ital 6:85–95

    Google Scholar 

  • Papi F, Keeton WT, Brown AI, Benvenuti S (1978) Do American and Italian pigeons rely on different homing mechanisms. J Comp Physiol [A] 128:303–317

    Google Scholar 

  • Pfeiffer CA, Johnston RE (1994) Hormonal and behavioral responses of male hamsters to females and female odors: roles of olfaction, the vomeronasal system, and sexual experience. Physiol Behav 55:129–138

    Article  PubMed  CAS  Google Scholar 

  • Porter RH, Hepper PG, Bouchot C, Picard M (1999) A simple method for testing odor detection and discrimination in chicks. Physiol Behav 67:459–462

    Article  PubMed  CAS  Google Scholar 

  • Potts WK, Wakeland EK (1990) Evolution of diversity at the major histocompatibility complex. Trends Ecol Evol 5:181–187

    Article  Google Scholar 

  • Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27

    Article  PubMed  CAS  Google Scholar 

  • Reiner AD, Perkel J, Bruce L, Butler A, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed  Google Scholar 

  • Reneerkens J, Piersma T, Sinninghe Damste JS (2002) Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc Biol Sci 269:2135–2139

    Article  PubMed  Google Scholar 

  • Reneerkens J, Piersma T, Damste JS (2005) Switch to diester preen waxes may reduce avian nest predation by mammalian predators using olfactory cues. J Exp Biol 208:4199–4202

    Article  PubMed  Google Scholar 

  • Reneerkens J, Piersma T, Sinninghe Damste JS (2006) Discerning adaptive value of seasonal variation in preen waxes: comparative and experimental approaches. Acta Zoolo Sinica 52(Suppl):272–275

    Google Scholar 

  • Rieke GK, Wenzel BM (1978) The forebrain projections of the pigeon olfactory bulb. J Morphol 158:41–56

    Article  PubMed  CAS  Google Scholar 

  • Roper TJ (1999) Olfaction in birds. Adv Study Behav 28:247–332

    Article  Google Scholar 

  • Sachs BD, Meisel RL (1988) The physiology of male sexual behavior. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York, pp 1393–1485

    Google Scholar 

  • Schaal B, Coureaud G, Langlois D, Giniès C, Sémon E, Perrier G (2003) Chemical and behavioural characterization of the rabbit mammary pheromone. Nature 424:68–72

    Article  PubMed  CAS  Google Scholar 

  • Sieck MH, Wenzel BM (1969) Electrical activity of the olfactory bulb of the pigeon. Electroenceph Clin Neurophysiol 26:62–69

    Article  PubMed  CAS  Google Scholar 

  • Smith TE, Tomlinson AJ, Mlotkiewicz JA, Abbott DH (2001) Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem Senses 26:449–458

    Article  PubMed  CAS  Google Scholar 

  • Stager KE (1964) The role of olfaction in food location by the Turkey vulture (Cathartes aura). Los Angeles County Mus Contrib Sci 81:3–63

    Google Scholar 

  • Steiger SS, Fidler AE, Kempenaers B (2009a) Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol Biol 9:117

    Article  PubMed  CAS  Google Scholar 

  • Steiger SS, Kuryshev VY, Stensmyr MC, Kempenaers B, Mueller JC (2009b) A comparison of reptilian and avian olfactory receptor gene repertoires: species-specific expansion of group gamma genes in birds. BMC Genomics 10:446

    Article  PubMed  CAS  Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds—an overview. Amer Zool 40:461–477

    Article  Google Scholar 

  • Sundberg H, Doving K, Novikov S, Ursin H (1982) A method for studying responses and habituation to odors in rats. Behav Neural Biol 34:113–119

    Article  PubMed  CAS  Google Scholar 

  • Taziaux M, Keller M, Ball GF, Balthazart J (2008) Site specific effects of anosmia and cloacal gland anesthesia on Fos expression induced in male quail by sexual behavior. Behav Brain Res 194:52–65

    Article  PubMed  CAS  Google Scholar 

  • Thunken T, Waltschyk N, Bakker TCM, Kullmann H (2009) Olfactory self-recognition in a cichlid fish. Anim Cogn 12:717–724

    Article  PubMed  Google Scholar 

  • Tucker D (1965) Electrophysiological evidence of olfactory function in birds. Nature 207:34–36

    Article  PubMed  CAS  Google Scholar 

  • Verheyden C, Jouventin P (1994) Olfactory behavior of foraging procellariiforms. Auk 111:285–291

    Google Scholar 

  • Walcott C (1996) Pigeon homing: observations, experiments and confusions. J Exp Biol 199:21–27

    PubMed  Google Scholar 

  • Walker JC, Walker DB, Tambiah CR, Gilmore KS (1986) Olfactory and nonolfactory odor detection in pigeons: elucidation by a cardiac acceleration paradigm. Physiol Behav 38:575–580

    Article  PubMed  CAS  Google Scholar 

  • Wallraff HG (1996) Seven theses on pigeon homing deduced from empirical findings. J Exp Biol 199:105–111

    PubMed  Google Scholar 

  • Wallraff HG (2000) Simulated navigation based on observed gradients of atmospheric trace gases (models on pigeon homing, part 3). J Theor Biol 205:133–145

    Article  PubMed  CAS  Google Scholar 

  • Wallraff HG (2004) Avian olfactory navigation: its empirical foundation and conceptual state. Anim Behav 67:189–204

    Article  Google Scholar 

  • Warham J (1990) The Petrels: their ecology and breeding systems. Academic Press, London

    Google Scholar 

  • Warham J (1996) The behaviour, population biology and physiology of the petrels. Academic Press, London

    Google Scholar 

  • Wenzel BM (1968) Olfactory prowess of the kiwi. Nature 220:1133–1134

    Article  PubMed  CAS  Google Scholar 

  • Wenzel BM (1971a) Olfaction in birds. In: Beidler LM (ed) Handbook of sensory physiology IV chemical senses 1 olfaction. Springer, Berlin, pp 432–448

    Google Scholar 

  • Wenzel BM (1971b) Olfactory sensation in the kiwi and other birds. Ann NY Acad Sci 188:183–193

    Article  PubMed  CAS  Google Scholar 

  • Wenzel BM (1973) Chemoreception. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 3. Academic Press, New York, pp 389–415

    Google Scholar 

  • Wenzel BM (1980) Chemoreception in seabirds. In: Burger J, Olla BL, Winn HE (eds) Behavior of marine animals, vol 4. Plenum Publishing Co., New York, pp 41–67

    Google Scholar 

  • Wenzel BM, Meisami E (1987) Number, size and density of mitral cells in the olfactory bulbs of the northern fulmar and rock dove. Ann NY Acad Sci 510:700–702

    Article  Google Scholar 

  • Wenzel BM, Rausch LJ (1977) Does the olfactory system modulate affective behavior in the pigeon? In: Wenzel BM, Ziegler HP (eds) Tonic functions of sensory systems. Ann NY Acad Sci vol. 290, pp 314–330

  • Wenzel BM, Salzman A (1968) Olfactory bulb ablation or nerve section and pigeon’s behavior in non-olfactory learning. Exp Neurol 22:472–479

    Article  PubMed  CAS  Google Scholar 

  • Wenzel BM, Sieck MH (1972) Olfactory perception and bulbar electrical activity in several avian species. Physiol Behav 9:287–293

    Article  PubMed  CAS  Google Scholar 

  • Wenzel BM, Albritton PF, Salzman A, Oberjat TE (1969) Behavioral changes in pigeons following olfactory nerve section or bulb ablation. In: Pfaffman C (ed) Olfaction and taste 3. Rockefeller University, New York, pp 278–287

    Google Scholar 

  • Whittaker DJ, Reichard DG, Dapper AL, Keterson ED (2009) Behavioral responses of nesting female dark-eyed juncos Junco hyemalis to hetero- and conspecific passerine preen oils. J Avian Biol 40:579–583

    Article  Google Scholar 

  • Wiltschko R (1996) The function of olfactory input in pigeon orientation: does it provide navigational information or play another role? J Exp Biol 199:113–119

    PubMed  Google Scholar 

  • Winans SS, Powers JB (1977) Olfactory and vomeronasal deafferentation of male hamsters: histological and behavioral analyses. Brain Res 126:325–344

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wyatt TD (2009) Fifty years of pheromones. Nature 457:262–263

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Yamazaki K, Beauchamp GK, Bard J, Thomas L, Boyse EA (1981) Distinctive urinary odors governed by the major histocompatibility locus of the mouse. Proc Nat Acad Sci USA 78:5817–5820

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L (1976) Control of mating preferences in mice by genes in major histocompatibility complex. J Exp Med 144:1324–1335

    Article  PubMed  CAS  Google Scholar 

  • Zelano B, Edwards SV (2002) An MHC component to kin recognition and mate choice in birds: Predictions, progress, and prospects. Amer Nat 160:S225–S237

    Article  Google Scholar 

Download references

Acknowledgments

We thank Caroline Nieberding, Francesco Bonadonna, Julie Hagelin and one anonymous reviewer for helpful comments on a previous version of this manuscript. Preparation of this review and the experimental work from the J.B. laboratory that is described were supported by grants from the National Institutes of Health (R01 NIH/MH50388) and the Belgian FRFC2.4537.09 to J.B. S.P.C. received a Léon Speeckaert Fund postdoctoral fellowship from the King Baudouin Foundation and the Belgian American Educational Foundation (BAEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Balthazart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caro, S.P., Balthazart, J. Pheromones in birds: myth or reality?. J Comp Physiol A 196, 751–766 (2010). https://doi.org/10.1007/s00359-010-0534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0534-4

Keywords

Navigation