Skip to main content
Log in

Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The bumblebee Bombus (Psithyrus) norvegicus Sp.-Schn. is an obligate social parasite of B. (Pyrobombus) hypnorum L. Behavioural observations indicated that nest-invading B. norvegicus females may use allomones to defend themselves against attacking host workers. However, so far no defensive chemicals used by social parasitic bumblebee females have been identified. We analysed volatile constituents of the cuticular lipid profile of B. norvegicus females. Furthermore, we performed electrophysiological studies and behavioural experiments in order to identify possible chemical weapons. Coupled gas chromatography-electroantennography showed 15 compounds to trigger responses in antennae of the host workers. Using gas chromatography–mass spectrometry, the main compound among the cuticular volatiles of B. norvegicus females was found to be dodecyl acetate. A corresponding mixture of synthetic volatiles as well as pure dodecyl acetate showed a strong repellent effect on starved host workers. B. norvegicus females use dodecyl acetate to repel attacking B. hypnorum workers during nest usurpation and subsequently during colony development. Dodecyl acetate is the first repellent allomone identified in bumblebees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Altenkirch G (1962) Untersuchungen über die Morphologie der abdominalen Hautdrüsen einheimischer Apiden (Insecta, Hymenoptera. Zool Beitr 7:161–238

    Google Scholar 

  • Ayasse M, Paxton R (2002) Brood protection in social insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 117–148

  • Ayasse M, Engels W, Hefetz A, Tengö J, Lübke G, Francke W (1993) Ontogenetic patterns of volatiles identified in Dufour's gland extracts from queens and workers of the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera: Halictidae). Insectes Soc 40:41–58

    Google Scholar 

  • Ayasse M, Marlovits T, Tengö J, Taghizadeh T, Francke W (1995) Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L? (Hymenoptera, Apidae) Apidologie 26:163–180

    Google Scholar 

  • Ayasse M, Engels W, Lübke G, Taghizadeh T, Francke W (1999) Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera, Halictidae). Behav Ecol Sociobiol 45:95–100

    Article  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus H, Löfstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success? Evolution 54:1995–2006

    PubMed  Google Scholar 

  • Bergström G, Löfqvist J (1968) Odour similarities between the slave-keeping ants Formica sanguinea and Polyergus rufescens and their slaves Formica fusca and Formica rufibarbis. J Insect Physiol 14:995–1011

    Google Scholar 

  • Billen J, Morgan D (1998) Pheromone communication in social insects: sources and secretions. In: Meer RK van der et al. (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 3–33

  • Blum MS, Crewe RM, Kerr WE, Keith LH, Garrison AW, Walker MM (1970) Citral in stingless bees: isolation and functions in trail-laying and robbing. J Insect Physiol 16:1637–1648

    PubMed  Google Scholar 

  • Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass-spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822

    CAS  Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    CAS  Google Scholar 

  • D'Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour's gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142

    CAS  Google Scholar 

  • Duffield RM, Wheeler JW, Eickwort GC (1984) Sociochemicals of bees. In: Bell WJ, Carde RT (eds) Chemical ecology of insects. Chapman and Hall, London, pp 387–428

  • Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in mono-unsaturated fatty acids by dimethyl disulfide. Derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277

    CAS  Google Scholar 

  • Fisher RM (1983a) Inability of the social parasite Psithyrus ashtoni to suppress ovarian development in workers of Bombus affinis (Hymenoptera: Apidae). J Kansas Entomol Soc 56:69–73

    Google Scholar 

  • Fisher RM (1983b) Behavioural interactions between a social parasite, Psithyrus citrinus (Hymenoptera: Apidae) and its bumble bee hosts. Proc Entomol Soc Ontario 114:55–60

    Google Scholar 

  • Fisher RM (1984a) Evolution and host specificity: a study of the invasion success of a specialized bumble bee social parasite. Can J Zool 62:1641–1644

    Google Scholar 

  • Fisher RM (1984b) Dominance by a bumble bee social parasite (Psithyrus citrinus) over workers of its host (Bombus impatiens). Anim Behav 32:301–302

    Google Scholar 

  • Fisher RM (1988) Observation on the behaviors of three European cuckoo bumble bee species (Psithyrus). Insectes Soc 35:341–354

    Google Scholar 

  • Fisher RM, Sampson BJ (1992) Morphological specializations of the bumble bee social parasite Psithyrus ashtoni (Cresson) (Hymenoptera: Apidae). Can Entomol 124:69–77

    Google Scholar 

  • Hefetz A, Taghizadeh T, Francke W (1996) The exocrinology of the queen bumble bee Bombus terrestris (Hymenoptera: Apidae, Bombini). Z Naturforsch 51c:409–422

    Google Scholar 

  • Hefetz A (1998) Exocrine glands and their products in non-Apis bees: chemical, functional and evolutionary perspectives. In: Meer RK van der et al. (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 236–256

  • Hölldobler B, Michener CD (1980) Mechanisms of identification and discrimination in social hymenoptera. In: Markl H (ed) Evolution of social behaviour: hypotheses and empirical tests. Chemie, Weinheim, pp 35–58

  • Honk CGJ van, Velthuis HHW, Röseler PF, Malotaux M (1980) The mandibular glands of Bombus terrestris queens as a source of queen pheromones. Entomol Exp Appl 28:191–198

    Google Scholar 

  • Honk CGJ van, Röseler PF, Veltuis HHW, Malotaux M (1981) The conquest of a Bombus terrestris colony by a Psithyrus vestalis female. Apidologie 12:57–67

    Google Scholar 

  • Jarau S (2003) Recruitment behaviour and chemical communication in stingless bees (Hymenoptera, Apidae, Meliponini). PhD thesis, University of Vienna

  • Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a check list of volatile compounds isolated by head-space techniques. Phytochemistry 433:252–280

    Google Scholar 

  • Küpper G (1996) Psithyrus sylvestris (Lep.) in Völkern von Bombus pratorum (L.) (Hymenoptera: Apidae). PhD thesis, Ruhr-University Bochum

  • Küpper G, Schwammberger KH (1995) Social parasitism in bumble bees (Hymenoptera, Apidae): observations of Psithyrus sylvestris in Bombus pratorum nests. Apidologie 26:245–254

    Google Scholar 

  • Lenoir A, D'Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    PubMed  Google Scholar 

  • Løken A (1984) Scandinavian species of the genus Psithyrus Lepeletier (Hymenoptera: Apidae). Entomol Scand [Suppl] 23:1-45

    Google Scholar 

  • McLafferty FW, Stauffer DB (1989) The Wiley NBS registry of mass spectral data. Wiley Interscience, New York

  • Michener DC (2000) The bees of the world. The John Hopkins University Press, Baltimore

  • Mori A, Grasso DA, Visicchio R, Le Moli F (2000) Colony founding in Polyergus rufescens: the role of the Dufour's gland. Insectes Soc 47:7-10

    Article  Google Scholar 

  • Norusis MJ (1993a) SPSS for Windows: base system user's guide, release 6.0. SPSS, Chicago, USA

  • Norusis MJ (1993b) SPSS for Windows: professional statistics, release 6.0. SPSS, Chicago, USA

  • Pankiw T, Winston ML, Slessor KN (1995) Queen attendance behavior of worker honey bees (Apis mellifera L.) that are high and low responding to queen mandibular pheromone. Insectes Soc 42:371–378

    Google Scholar 

  • Regnier FE, Wilson EO (1971) Chemical communication and "propaganda" in slave-maker ants. Science 172:267–269

    Google Scholar 

  • Röseler PF, Röseler I, Honk CGJ van (1981) Evidence for inhibition of corpora allata activity in workers of Bombus terrestris by a pheromone from the queen's mandibular glands. Experientia 37:348–351

    Google Scholar 

  • Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

  • Singer T (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405

    CAS  Google Scholar 

  • Taghizadeh T (1996) Untersuchung flüchtiger Inhaltsstoffe von Hymenopteren. PhD thesis, University of Hamburg

  • Topoff H, Cover S, Greenberg L, Goodloe L, Sherman P (1988) Colony founding by queens of the obligatory slave-making ant, Polyergus breviceps: the role of the Dufour's gland. Ethology 78:209–218

    Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press, Harvard

  • Wittmann D, Radtke R, Zeil J, Lübke J, Francke W (1990) Robber bees (Lestrimelitta limao) and their host. Chemical and visual cues in nest defense by Trigona (Tetragonisca) angustula (Apidae: Meliponinae). J Chem Ecol 16:631–641

    CAS  Google Scholar 

  • Zimma BO (2002) Identification of a repellent allomone in the social parasitic bumblebee Psithyrus norvegicus (Hymenoptera, Apidae). Diploma thesis, University of Vienna

Download references

Acknowledgements

We wish to thank Patrizia D'Ettorre, Jeremy McNeal, Stefan Schröder and Anna Srámková for critical reading of the manuscript and Eva Zellinger and Petra Karlin for technical assistance. John Plant helped to revise the English. Grants from the FWF Austria (Fond zur Förderung der wissenschaftlichen Forschung, P09773-BIO) to Manfred Ayasse, and from the Swedish Natural Science Research Council to Jan Tengö are gratefully acknowledged. Wittko Francke appreciates financial support by the Fonds der chemischen Industrie. The experiments comply with the Principles of animal care, publication No. 86–23, revised 1985 of the National Institute of Health and the current laws of Austria, where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ayasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimma, B.O., Ayasse, M., Tengö, J. et al. Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae). J Comp Physiol A 189, 769–775 (2003). https://doi.org/10.1007/s00359-003-0451-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0451-x

Keywords

Navigation