Skip to main content

Advertisement

Log in

Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

In the bat-pollinated vine Mucuna holtonii only the first visit to a flower is rewarded with a substantial amount of nectar, which is released when a bat lands on the flower and triggers an explosion mechanism. During later visits the bats receive only small amounts of nectar. Nevertheless, the inflorescences as a whole remain attractive, since further buds successively open during the night. Nectar-feeding bats Glossophaga commissarisi selectively visit unexploded, "virgin" flowers. They can discriminate buds, virgin and exploded flowers using echolocation. In field experiments bats exploited virgin flowers, the vexillum of which had been replaced by a same-sized triple mirror or by an artificial vexillum. Such flowers were frequently inspected, but not as often exploited as natural flowers. In two-alternative-forced-choice experiments the bats learned to discriminate between replicas of the vexillum and triple mirrors. The recognition distance was between 15 and 50 cm. Echoes of the three flowering stages differ in their spectral composition, which changes in dependence of the sound incidence angle in a characteristic way. We conclude that glossophagine bats are able to recognize small motionless structures like flowers and to accurately adjust their landing manoeuvres by using their echolocation system alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5A,B.
Fig. 6A–C.
Fig. 7.

Similar content being viewed by others

References

  • Arlettaz R, Jones G, Racey PA (2001) Effect of acoustic clutter on prey detection by bats. Nature 414:742–744

    Google Scholar 

  • Bradbury J (1970) Target discrimination by the echolocating bat Vampyrum spectrum. J Exp Zool 173:23–46

    CAS  PubMed  Google Scholar 

  • Dobat K, Peikert-Holle T (1985) Blüten und Fledermäuse (Chiropterophilie). Waldemar Kramer, Frankfurt/M

  • Habersetzer J, Vogler B (1983) Discrimination of surface-structured targets by the echolocating bat Myotis myotis during flight. J Comp Physiol A 152:275–282

    Google Scholar 

  • Helversen D von, Helversen O von (1999) Acoustic guide in bat pollinated flower. Nature 398:759–760

    Article  Google Scholar 

  • Helversen D von, Holderied M, Helversen O von (2003) Echoes of bat-pollinated bell-shaped flowers: conspicuous for nectar-feeding bats? Exp Biol (in press)

    Google Scholar 

  • Helversen O von (1993) Adaptations of flowers to pollination by glossophagine bats. In: Barthlott W (ed) Animal-plant interactions in tropical environments. Museum Koenig, Bonn, pp 41–59

  • Helversen O von, Y Winter (2003) Glossophagine bats and their flowers: costs and benefits for plants and pollinators. In: Kunz T, Fenton B (eds) Ecology of bats. University of Chicago Press, Chicago, pp 346–397

  • Helversen O von, Winkler L, Bestmann HJ (2000) Sulphur-containing "perfumes" attract flower visiting bats. J Comp Physiol A 186:143–153

    Article  PubMed  Google Scholar 

  • Jensen ME, Miller LA, Rydell J (2001) Detection of prey in a cluttered environment by the northern bat Eptesicus nilssonii. J Exp Biol 204:199–208

    CAS  PubMed  Google Scholar 

  • Kalko EKV, Condon MA (1998) Echolocation, olfaction and fruit display: how bats find fruit of flagellichorous cucurbits. Funct Ecol 12:364–372

    Article  Google Scholar 

  • Knudsen JT, Tollsten L (1995) Floral scent in bat-pollinated plants: a case of convergent evolution. Bot J Linn Soc 119:45–57

    Google Scholar 

  • Leippert D, Frank P, Gabriel P, Kutter S, Scheidemann KD, Stillfried N von, Weller F (2002) Prey-correlated spectral changes in echolocation sounds of the Indian vals vampir Megaderma lyra. Ethology 108:139–156

    Article  Google Scholar 

  • Mogdans J, Schnitzler H-U (1990) Range resolution and the possible use of spectral information in the echolocating bat Eptesicus fuscus. J Acoust Soc Am 88:754–757

    CAS  PubMed  Google Scholar 

  • Moss CF, Surlykke A (2001) Auditory scene analysis by echolocation in bats. J Acoust Soc Am 110:2207–2226

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Kuc R (2000). Foliage echoes: a probe into the ecological acoustics of bat echolocation. J Acoust Soc Am 108:836–845

    Article  PubMed  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in ecolocating bats. Trends Ecol Evol 4:160–166

    Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture. Physiol Rev 70:615–641

    CAS  PubMed  Google Scholar 

  • Schmid S (1988) Evidence of spectral basis of texture perception in bat sonar. Nature 331:617–619

    PubMed  Google Scholar 

  • Schmidt S, Hanke S, Pillat J (2000) The role of echolocation in the hunting of terrestrial prey—new evidence for an underestimated strategy in the gleaning bat Megaderma lyra. J Comp Physiol A 186:975–988

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler H-U, Kalko EKV (1998) How echolocating bats search and find food. In: Kunz TA, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, pp 183–196

  • Siemers BM, Schnitzler H-U (2000) Natterer's bat (Myotis nattereri Kuhl,1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav Ecol Sociobiol 47:400–412

    Article  Google Scholar 

  • Simmons JA, Lavender WA, Lavender BA, Doroshow CA, Kiefer SW, Livingston R, Scallet AC (1974) Target structure and echo spectral discrimination by echolocating bats. Science 186:1130–1132

    CAS  PubMed  Google Scholar 

  • Simmons JA, Moss CF, Ferragamo M (1990) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus Sonra

  • Suthers R, Chase J, Braford B (1969) Visual form discrimination by echolocating bats. Biol Bull 137:535–546

    CAS  PubMed  Google Scholar 

  • Thies W, Kalko EKV, Schnitzler H-U (1998) The roles of echolocation and olfaction in two neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol 42:397–409

    Google Scholar 

  • Tschapka M (1998) Koexistenz und Resourcennutzung in einer Artengemeinschaft von Blumenfledermäusen (Phyllostomidae: Glossophaginae) im atlantischen Tieflandregenwald Costa Ricas. Dissertation Universität Erlangen

  • Vogel S (1958) Fledermausblumen in Südamerika. Österreich bot Z 104:491–530

  • Vogel S (1968/1969) Chiropterophilie in der neotropischen Flora. Neue Mitteilungen I-III. Flora 157:562–602; 158:185–222; 158:289–323

    Google Scholar 

  • Winter Y, Helversen O von (2001) Bats as pollinators: foraging energetics and floral adaptations. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge pp 148–170

Download references

Acknowledgements

We gratefully acknowledge efficacious assistance and valuable advice: H. Opel helped to produce the artificial vexilla, Y. Winter gave advice and effective help in all technical problems concerning the training experiments, N. Kondratiev wrote the computer program to control the training experiments, M. Holderied installed hard- and software for the echo measurements, W. Schulze introduced us to the computer aided frame by frame evaluation of the videos and helped with all computational problems. He and M. Bauer prepared the figures. Lee Gass not only improved the English, but he and two anonymous referees gave valuable comments on the manuscript. We are also thankful to Bob Martin and Orlando Vargas at the OTS-station La Selva (Costa Rica), where we conducted the field experiments in 1993–1996. We thank the Costa Rican authorities, especially the Ministerio del Ambiente y Energia and the Area de Conservacion Cordillera Volcanica Central, for research permits. The experiments comply with the current German laws concerning animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. von Helversen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Helversen, D., von Helversen, O. Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. J Comp Physiol A 189, 327–336 (2003). https://doi.org/10.1007/s00359-003-0405-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0405-3

Keywords

Navigation