Skip to main content
Log in

Experimental analysis of the flow field over a novel owl based airfoil

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owl-specific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl tyto alba pratincola and the pigeon columbia livia. Front Zool 4:23, doi:10.1186/1742-9994-4-23

  • Bechert DW, Bruse M, Hage W, von der Hoeven JGT, Hoppe G (1997) Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J Fluid Mech 338:59–87

    Article  Google Scholar 

  • Biesel W, Butz H, Nachtigall W (1985) Erste Messungen der Flügelgeometrie bei frei gleitfliegenden Haustauben (columbia livia var. domestica) unter Benutzung neu ausgearbeiteter Verfahren der Windkanaltechnik und der Stereophotogrammetrie. Biona-report 3, pp 139–160

  • Burgmann S, Schröder W (2008) Investigation of the vortex induce unsteadiness of separation bubble via time-resolved and scanning PIV measurement. Exp Fluids 45(4):675–691. doi:10.1007/s00348-008-0548-7

  • Burgmann S, Dannemann J, Schröder W (2007) Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp Fluids (online). doi:10.1007/s00348-007-0421-0

  • Cal RB, Brzek B, Castillo L, Johannsson G (2007) Anisotropy of the rough turbulent boundary layer subject to a favorable pressure gradient. In: Proceedings of TFSP-5, vol 1, pp 157–162

  • Choi H, Moin P, Kim J (1993) Direct numerical simulation of turbulent flow over riblets. J Fluid Mech 255:503–539

    Article  MATH  MathSciNet  Google Scholar 

  • Graham RR (1934) The silent flight of owls. J R Aeronaut Soc 38:837–843

    Google Scholar 

  • Hileman J, Spakovszky Z, Drela M, Sargant M (2007) Airframe design for "silent aircraft". In: 45th AIAA aerospace sciences meeting and exhibit, AIAA 2007-453

  • Itoh M, Tamano S, Iguchi R, Yokota K, Akino N, Hino R, Kubo S (2006) Turbulent drag reduction by the seal fur surface. Phys Fluids 18(065102). doi: 10.1063/1.2204849

  • Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  MATH  Google Scholar 

  • Lang M, Rist U, Wagner S (2004) Investigations on controlled transition development in a laminar separation bubble by means of lda and piv. Exp Fluids 36:43–52. doi:10.1007/S00348-003-0625-X

    Article  Google Scholar 

  • Lilley GM (1998) A study of the silent flight of the owl. In: 4th AIAA/CEAS aeroacoustics conference, AIAA 98-2340

  • Lilley GM (2004) A quest for quiet commercial passenger transport aircraft for take-off and landing. In: 10th AIAA/CEAS aeroacoustics conference, AIAA 2004-2922

  • Liu T, Kuykendoll K, Rhew R, Jones S (2006) Avian wing geometry and kinematics. AIAA J 44(5):954–963

    Article  Google Scholar 

  • McAuliff BR, Yaras MI (2005) Separation-bubble-transition measurements on a low-Re airfoil using particle image velocimetry. In: Proceedings of GT2005 ASME Turbo Expo 2005: power for land, sea and air

  • Nachtigall W, Klimbingat A (1985) Messung der Flügelgeometrie mit der Profilkamm-Methode und geometrische Flügelkennzeichnung einheimischer Eulen. Biona-report 3, pp 45–86

  • Oehme H, Kitzler U (1975) On the geometry of the avian wing (studies on the biophysics and physiology of avian flight II). NASA-TT-F-16901

  • Roberts SK, Yaras MI (2006) Effects of surface-roughness geometry on separation-bubble transition. J Turbomach Trans ASME 128:349–356

    Article  Google Scholar 

  • Thwaites B (ed) (1960) Incompressible aerodynamics. Oxford University Press, London

  • Vad J, Koscsó G, Gutermuth M, Kasza Z, Tábi T, Csörgö T (2006) Study of the aero-acoustic and aerodynamic effects of soft coating upon airfoil. JSME Int J 49(3):648–656

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Deutsche Forschungsgemeinschaft in the priority research program "SPP 1207 Strömungsbeeinflussung in der Natur und Technik" under grant number SCHR 309/35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Klän.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klän, S., Bachmann, T., Klaas, M. et al. Experimental analysis of the flow field over a novel owl based airfoil. Exp Fluids 46, 975–989 (2009). https://doi.org/10.1007/s00348-008-0600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-008-0600-7

Keywords

Navigation