Skip to main content
Log in

Heavy metal research in lacustrine sediment: a review

  • Environment and Chemistry
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Heavy metals are released into environment from a wide range of natural and anthropogenic sources. Aquatic ecosystems are normally at the receiving end and in many cases, with lakes as intermediaries. Lacustrine sediments are important sinks for heavy metals and play a significant role in enrichment and remobilization of heavy metals in aquatic systems. Therefore, characteristics of heavy metal in lacustrine sediments become one of the important issues in environmental sciences. Progress in heavy metal research of lake sediments since late 1980s is reviewed comprehensively in this paper from over 100. The Highlights are placed on the establishment of aquatic sediment quality guidelines, references chemical speciation of heavy metals, heavy metal transport mechanisms in lakes, and high-resolution study of lake borehole cores. Meanwhile, suggestions for heavy metal research in lacustrine sediment in the future are proposed, including such issues as using integrated approaches to assess aquatic ecosystem, modern lake dynamic process, high-resolution evolutionary sequence and spatial differentiation of environments and international lake database, which should be referential to the promotion of research on heavy metal in aquatic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alloway, B. J., 1990. Soil processes and the behaviour of metals. In: Alloway, B.J. ed. Heavy Metals in Soils. Blackie and Son Ltd., Glasgow, Britain. p. 7–28.

    Google Scholar 

  • Arnason, J. G. and B. A. Fletcher, 2003. A 40+ year record of Cd, Hg, Pb, and U deposition in sediments of Patroon Reservoir, Albany County, NY, USA. Environmental Pollution 123: 383–391.

    Article  Google Scholar 

  • Birch, L., K. W. Hanselmann and R. Bachofen, 1995. Heavy metal conservation in Lake Canagno sediments: historical records of anthropogenic emission in a meromictic Alpine Lake. Wat. Res. 30(3): 679–687.

    Article  Google Scholar 

  • Briggs, G. E. and R. N. Robertson, 1997. Apparent free space. Annual Review of Plant Physiology 8: 11–13.

    Article  Google Scholar 

  • Burton, G.A. Jr., 1991. Assessing freshwater sediment toxicity. Environ. Toxicol. Chem. 10: 1585–1627.

    Article  Google Scholar 

  • Chapman, P. M., R. C. Barrick, J. M. Neff and R. C. Swartz, 1987. Four independent approaches to developing sediment quality criteria yield similar values for model contaminants. Environ. Toxicol. Chem. 6: 723–725.

    Article  Google Scholar 

  • Chen, C. T. A., J. K. Wann and J. Y. Lou, 2001. Aeolian flux of metals in Taiwan in the past 2600 years. Chemosphere. 43: 287–294.

    Article  Google Scholar 

  • Chen, C. T. A., J. T. Wu, B. J. Wang and K. M. Huang, 2004. Acidification and Trace Metals of Lakes in Taiwan. Aquatic Geochemistry 10: 33–57.

    Article  Google Scholar 

  • Chester, R., W. M. Kudoja, Thomas, A. and Towner, J., 1985. Pollution reconnaissance in stream sediments using non-residual trace metals. Environ. Pollut. Ser. B 10: 213–238.

    Article  Google Scholar 

  • China Geological Survey Bureau (CGS) DD2004-XX, 2004. Methods of Quality Control and External Detection on Ecogeochemical Assessment Samples (Interim Version). China Geological Survey, Beijing, 37p.

    Google Scholar 

  • Collins, B.S., R. R. Sharitz and D. P. Coughlin, 2005. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Bioresource Technology 96(8): 937–948.

    Article  Google Scholar 

  • Cubbage, J., D. Batts and S. Briendenbach, 1997. Creation and analysis of freshwater sediment quality values in Washington State. Environmental Investigations and Laboratory Services Program, Washington Department of Ecology, Olympia, WA, USA. 178p.

    Google Scholar 

  • Davidson, C. M., R. P. Thomas, S. E. McVey, R. Perala, D. Littlejohn and A. M. Ure, 1994. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Annal. Chim. Acta 291: 227–286.

    Google Scholar 

  • El Bilali, L., P. E. Rasmussen, G. E. M. Hall and D. Fortin, 2002 Role of sediment composition in trace metal distribution in lake sediments. Applied Geochemistry 17: 1 171–1 181.

    Article  Google Scholar 

  • Everard, M. and P. Denny, 1985. Flux of lead in submerged plants and its relevance to a fresh water system. Aquatic Botany 21: 181–193.

    Article  Google Scholar 

  • Förstner, U. and G. T. W. Wittmann, 1979. Metal pollution in the aquatic environment. Springer Verlag, Berlin. 486p.

    Google Scholar 

  • Förstner, U., A. Wolfgang, C. Wolfgang, M. Kersten, and W. Salomons, 1984. Mobility of heavy metals in dredged harbour sediments. In: Sly, P. G. ed., Sediment and water interaction: proceedings of the third international symposium on interactions between sediment and water. Spring-Verlag, New York, p. 371–380.

    Google Scholar 

  • Fude, L., B. Harris, M. M. Urrutia and T. J. Beveridge, 1994. Reduction of Cr(VI) by a Consortium of Sulfate-Reducing Bacteria (SRB III). Applied and Environmental Microbiology 60: 1 525–1 531.

    Google Scholar 

  • Gambrell, R. P., C. N. Reddy and R. A. Khalid, 1983. Characterization of trace and toxic materials in sediments of a lake being restored. J. Wat. Pollut. Cont. Fed. 55: 1201–1210.

    Google Scholar 

  • Great Lakes Water Quality Board, 1982. Guidelines and Register for the Evaluation of Great Lakes Dredging Projects. International Joint Commission, Windsor, Ontario, Canada. 236P.

    Google Scholar 

  • Greenway, M., 1997. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology 35(5): 135–142.

    Article  Google Scholar 

  • Groudev, S. N., S. G. Bratcova and K. Komnitsas, 1999. Treatment of waters polluted with radioactive elements and heavy metals by means of a laboratory passive system. Minerals Engineering 12(3): 261–270.

    Article  Google Scholar 

  • Hallberg, K. B. and D. B. Johnson, 2005. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Science of the Total Environment 338(1/2): 53–66.

    Article  Google Scholar 

  • Hares, R. J. and N. I. Ward, 2004. Sediment accumulation in newly constructed vegetative treatment facilities along a new major road. Science of the Total Environment 334/335: 473–479.

    Article  Google Scholar 

  • Hu, S. Y., C. L. Deng, E. Appel and K. L. Verosub, 2002. Environmental magnetic studies of lacustrine sediments. Chinese Science Bulletin 47(7): 613–616.

    Article  Google Scholar 

  • Ingersoll, C. G., T. Dillon and G. R. Biddinger, 1997. Ecological risk assessment of contaminated sediments. Society of Environmental Toxicology and Chemistry, SETAC Press, Pensacola, FL, USA. 210p.

    Google Scholar 

  • Ingersoll, C. G., P. S. Haverl, E. L. Brunson, T. J. Canfield, F. J. Dwyer, C. E. Henke, N. E. Emble, D. R. Mount and R. G. Fox, 1996. Calculation and evaluation of sediment effect concentrations for the amphipod, Hyalella azteca and the midge, Chironomus riparius. J. Great Lakes Res. 22: 602–623.

    Google Scholar 

  • Johnston, C. A., 1993. Mechanisms of water wetland water quality interaction. In: Moshiri, G. A. ed., Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, p. 293–300.

    Google Scholar 

  • Kalin, M., 2001. Biogeochemical and ecological consideration in designing wetland treatment systems in post-mining landscapes. Waste Management 21: 191–196.

    Article  Google Scholar 

  • Kersten, M. and U. Förstner, 1986. Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Sci. Technol. 18: 121–130.

    Google Scholar 

  • Kober, B., M. Wessels, A. Bollhofer and A. Mangini, 1999. Pb isotopes of Lake Constance, Central Europe constrain the heavy metal pathways and the pollution history of the catchment, the lake and regional atmosphere. Geochim. Cosmochim. Acta 63(9): 1293–1303.

    Article  Google Scholar 

  • Lee, B. G., S. B. Griscom, J. S. Lee, H. J. Choi, C. H. Koh, S. N. Luoma and N. S. Fisher, 2000. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science 287: 282–284.

    Article  Google Scholar 

  • Lee, C. L., T. C. Wang, C. H. Hsu and A. A Chiou, 1998. Heavy Metal Sorption by Aquatic Plants in Taiwan. Environmental Contamination and Toxicology 61: 497–504.

    Article  Google Scholar 

  • Long, E. R. and L. G. Morgan, 1991. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. National Oceanic and Atmospheric Administration Technical Memorandum, NOS OMA 52, Seattle, WA, USA. 131p.

  • MacDonald, D. D., L. M. DiPinto, J. Field, C. G. Ingersoll, E. R. Long and R. C. Swartz, 2000a. Development and evaluation of consensus-based sediment effect concentrations for polychlorinated biphenyls (PCBs). Environ. Toxicol. Chem. 19: 1 403–1 413.

    Article  Google Scholar 

  • MacDonald, D. D., C. G. Ingersoll and T. A. Berger, 2000b. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39: 20–31.

    Article  Google Scholar 

  • Man, K. W., J. S. Zheng, A. P. K. Leung, P. K. S. Lam, M. H. W. Lam and Y. F. Yen, 2004. Distribution and behavior of trace metals in the sediment and porewater of tropical coastal wetland. Science of the Total Environment 327: 295–314.

    Article  Google Scholar 

  • Martin, J. M., P. Nirel and A. J. Thomas, 1987. Sequential extraction techniques: promises and problems. Mar. Chem. 22: 313–342.

    Article  Google Scholar 

  • Mashauri, D. A., D. M. M. Mulugu and B. S. Abdul Hussein, 2000. Constructed wetland at the University of Dar Es Salaam. Water Research 24(4): 1135–1144.

    Article  Google Scholar 

  • Matagi, S. V., D. Swai, and R. Mugabe, 1998. A review of heavy metal removal Mechanisms in wetlands. Afr. J. Trop. Hydrobiol. Fish 8: 23–35.

    Google Scholar 

  • Morse, J. W. and G. W. Luther III, 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 63: 3373–3378.

    Article  Google Scholar 

  • Müller, G., 1988. Chemical decontamination of dredged materials, combustion residues, soil and other materials contaminated with heavy metals. In: Wolf, W. J., Van de Brink, Colon, F. J. ed. 2nd international TNO/BMFT conference on contaminated soil Vol. 2. Kluwer Dorrecht, Amsterdam, Holland. p. 1439–1442.

    Google Scholar 

  • Nirel, P. M. V. and F. M. M. Morel, 1990. Pitfalls of sequential extractions. Water Res. 24: 1055–1056.

    Article  Google Scholar 

  • NOAA (National Oceanic and Atmospheric Administration), 1999. Screening quick reference tables (Squirts). http://response.restoration.noaa.gov/cpr/sediment/squirt/squirt.htm.

  • Noller, B. N., P. H. Woods and B. J. Ross, 1994. Case studies of wetland filtration of mine waste water in constructed and naturally occurring systems in northern Australia. Water Science and Technology 29: 257–266.

    Google Scholar 

  • Oehm, N. J., T. J. Luben and M. L. Ostrofsky, 1997. Spatial distribution of acid-volatile sulfur in the sediments of Canadohta Lake, PA. Hydrobiologia 345: 79–85.

    Article  Google Scholar 

  • Otte, M. L., C. C. Kearns and M. O. Doyle, 1995. Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bulletin of Environment Contamination and Toxicology 55: 154–161.

    Article  Google Scholar 

  • Patrick Jr., W. H. and M. Verloo, 1998. Distribution of soluble heavy metals between ionic and complexed forms in saturated sediment as affected by pH and redox conditions. Water Science and Technology 37(6/7): 165–172.

    Article  Google Scholar 

  • Persaud, D., R. Jaagumagi and A. Hayton, 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Canada. 246p.

    Google Scholar 

  • Quevauviller, Ph., H. A. van der Sloot, A. Ure, H. Muntau, A. Gomez and G. Rauret, 1996. Conclusions of the workshop: harmonization of leaching/extraction tests for environment risk assessment. Science of the Total Environment 178: 133–139.

    Article  Google Scholar 

  • Rapin, F., A. Tessier, P. G. C. Campbell and R. Carignan, 1986. Potential artifacts in sediments by a sequential extraction procedure. Environ. Sci. Technol. 20: 836–840.

    Article  Google Scholar 

  • Russell, R. A., P. J. Holden, K. L. Wilde and B. A. Neilan, 2003. Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. Hydrometallurgy 71(1/2): 227–234.

    Article  Google Scholar 

  • Salomons, W. and U. Förstner, 1984. Metals in the hydrocycle. Springer-Verlag, Berlin. 349p.

    Google Scholar 

  • Scholz, M., 2003. Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper. Water Research 37(6): 1270–1277.

    Article  Google Scholar 

  • Sheoran, A. S. and S. Bhandari, 2005. Treatment of mine water by a microbial mat: bench scale experiments. Mine Water and the Environment 24: 38–42.

    Article  Google Scholar 

  • Shiga Prefecture, 2001. Water quality of Lake Biwa. http:/www.pref.shiga.jp/biwako/koai/english/eng_04.htm.

  • Sinicrope, T. L., R. Langis, R. M. Gersberg, M. J. Busanardo and J. B. Zedler, 1992. Metal removal by wetland mesocosms subjected to different hydroperiods. Ecological Engineering 1(4): 309–322.

    Article  Google Scholar 

  • Smith, S. L., D. D. MacDonald, K. A. Keenleyside, C. G. Ingersoll and J. Field, 1996. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. J. Great Lakes Res. 22: 624–638.

    Article  Google Scholar 

  • Sobolewski, A., 1999. A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. International Journal of Phytoremediation 1(1): 19–51.

    Article  Google Scholar 

  • Sriyaraj, K. and R. B. E. Shutes, 2001. An assessment of the impact of motorway runoff on a pond, wetland and stream. Environment International 26(5/6): 433–439.

    Article  Google Scholar 

  • Stumm, W. and J. J. Morgan, 1970. Aquatic Chemistry: an introduction emphasizing chemical equilibria natural waters. John Wiley & Sons, New York, 583p.

    Google Scholar 

  • Swartz, R. C., 1999. Consensus sediment quality guidelines for PAH mixtures. Environ. Toxicol. Chem. 18: 780–787.

    Article  Google Scholar 

  • Tessier, A., P. G. Campbell and M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Annals of Chemistry 51: 844–851.

    Article  Google Scholar 

  • Thomas, A., R. B. Debusk, J. Laughlin and L. N. Schwartz, 1996. Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Research 30(11): 2707–2716

    Article  Google Scholar 

  • Thomas, G. S. and M. S. William, 2003. Chemistry of the Environment (2nd Edition). Pearson Education Asia Limited and Tsinghua University Press, Beijing. 489p.

    Google Scholar 

  • Thomas, R. L., 1987. A protocol for the selection of process oriented remedial options to control in situ sediment contaminants. Hydrobiologia 149: 247–258.

    Article  Google Scholar 

  • Tipping, E., N. B. Hetherington, J. Hilton, D. W. Thompson, E. Bowles, J. Hamilton-Taylor, 1985. Artifacts in the use of selective chemical extraction to determine distributions of metals between oxides of manganese and iron. Anal. Chem. 57: 1944–1946.

    Article  Google Scholar 

  • US Environmental Protection Agency, 1987. An overview of sediment quality in the United States. EPA 905/9-88-002, Office of Water Regulations and Standards, Washington, DC, and EPA Region 5, Chicago. http://www.epa.gov/waterscience/library/sediment/overview.pdf

    Google Scholar 

  • US Environmental Protection Agency, 1997. The incidence and severity of sediment contamination in surface waters of the United States, Vols. 1–3. EPA 823-R-97-006, Science and Technology Office, Washington, DC. http://www.epa.gov/OST/cs/congress.html

    Google Scholar 

  • van den Berg, G. A., S. E. J. Buykx, M. A. G. T. van den Hoop, L. M. van der Heijdt, and J. J. G. Zwolsman, 2001. Vertical profiles of trace metals and acid-volatile sulphide in a dynamic sedimentary environment: Lake Ketel, The Netherlands. Applied Geochemistry 16: 781–791.

    Article  Google Scholar 

  • van den Berg, G. A., J. P. G. Loch, L. M. van der Heijdt, and J. J. G. Zwolsman, 2000. Redox processes in recent sediments of the river Meuse, Netherlands. Biogeochem. 48: 217–235.

    Article  Google Scholar 

  • Walker, D. J. and S. Hurl, 2002. The reduction of heavy metals in a storm water wetland. Ecological Engineering 18(4): 407–414.

    Article  Google Scholar 

  • Wallman, K., M. Kersten, J. Gruber and U. Förstner, 1993. Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. Int. J. Environ. Anal. Chem. 51: 187–200.

    Article  Google Scholar 

  • Wan, G. J., 1995. New progress of 137Cs and 210Pbex methods used for lake sedimentary dating. Advance in Earth Science 10: 188–201. (in Chinese)

    Google Scholar 

  • Wiebner, A., U. Kappelmeyer, P. Kuschk, M. Kastner, 2005. Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Research 29: 248–256.

    Article  Google Scholar 

  • Windom, H. L., S. J. Schropp, F. D. Calder, J. D. Ryan, R. G. Smith, L. C. Burney, F. G. Lewis and C. H. Rawlinson, 1989. Natural trace metal concentrations in estuarine and coastal marine sediments of the southern United States. Envirn. Sci. Technol. 23(3): 314–320.

    Article  Google Scholar 

  • Wu, J. L. and S. M. Wang, 1997. Climatic variation during the last interglacial period recorded in the lake carbonate deposit, eastern Qinghai-Xizang Plateau. Chinese Science Bulletin, 42(12): 1017–1031.

    Article  Google Scholar 

  • Wu, Y. H., S. M. Wang, W. L. Xia and J. Liu, 2005. Dating recent lake sediments using spheroidal carbonaceous particle (SCP). Chinese Science Bulletin 50(10): 1 016–1 020.

    Article  Google Scholar 

  • Xiang, L., S. M. Wang and B. Xue, 1996. Accumulation and time maker significance of Chernobyl derived 137Cs in lake sediments from Jiangsu-Anhui. Chin. J. Oceanol. Limnol. 27: 132–139. (in Chinese)

    Google Scholar 

  • Ye, Z. H., S. N. Whiting, J. H. Qian, C. M. Lytle, Z. Q. Lin and Terry, N., 2001. Wetlands and aquatic processes, trace elements removal from coal ash leachate by a 10 year old constructed wetland. Journal of Environmental Quality 30: 1 710–1 719.

    Google Scholar 

  • Zhang, Z. K., S. M. Wang and J. Shen, 1998a. Channel changes of Yellow River recorded by lake sediments from Nansihu Lake in the lower catchment of Yellow River. J. Lake Sciences 10: 42–51. (in Chinese)

    Google Scholar 

  • Zhang, Z. K., R. J. Wu and S. M. Wang, 1998b. Environmental changes recorded by lake sediments in Juyanhai Lake during the past 2600 years. J. Lake Science 10: 157–174. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Zhigang  (姚志刚).

Additional information

Supported by China Geological Survey (No. 200314200021).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Gao, P. Heavy metal research in lacustrine sediment: a review. Chin. J. Ocean. Limnol. 25, 444–454 (2007). https://doi.org/10.1007/s00343-007-0444-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-007-0444-7

Keywords

Navigation