Skip to main content
Log in

Femtosecond energy relaxation in suspended graphene: phonon-assisted spreading of quasiparticle distribution

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ultra-fast optical measurements of few-layer suspended graphene films grown by chemical vapor deposition were performed with femtosecond pump–probe spectroscopy. The relaxation processes were monitored in transient differential transmission (ΔT/T) after excitation at two different wavelengths of 350 and 680 nm. Intraband electron–electron scattering, electron–phonon scattering, interband Auger recombination and impact ionization were considered to contribute to ΔT/T. All these processes may play important roles in spreading the quasiparticle distribution in time scales up to 100 fs. Optical phonon emission and absorption by highly excited non-equilibrium electrons were identified from ΔT/T peaks in the wide spectral range. When the probe energy region was far from the pump energy, the energy dependence of the quasiparticle decay rate was found to be linear. Longer lifetimes were observed when the quasiparticle population was localized due to optical phonon emission or absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. Y.H. Wu, T. Yu, Z.X. Shen, J. Appl. Phys. 108, 071301 (2010)

    Article  ADS  Google Scholar 

  4. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W.A. de Heer, A. Lanzara, E.H. Conrad, Phys. Rev. Lett. 103, 226803 (2009)

    Article  ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  6. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Adv. Funct. Mater. 19, 1 (2009)

    Article  Google Scholar 

  7. J.M. Dawlaty, S. Shivaraman, M. Chandrasekhar, F. Rana, M.G. Spencer, Appl. Phys. Lett. 92, 042116 (2008)

    Article  ADS  Google Scholar 

  8. D. Sun, Z.-K. Wu, C. Divin, X.B. Li, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Phys. Rev. Lett. 101, 157402 (2008)

    Article  ADS  Google Scholar 

  9. L. Huang, G.V. Hartland, L.Q. Chu, Luxmi, R.M. Feenstra, C. Lian, K. Tahy, H. Xing, Nano Lett. 10, 1308 (2010)

    Article  ADS  Google Scholar 

  10. J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, G.G. Gurzadyan, Appl. Phys. Lett. 97, 163103 (2010)

    Article  ADS  Google Scholar 

  11. J. Shang, T. Yu, J. Lin, G.G. Gurzadyan, ACS Nano 5, 3278 (2011)

    Article  Google Scholar 

  12. Z. Luo, T. Yu, J. Shang, Y. Wang, S. Lim, L. Liu, G.G. Gurzadyan, Z. Shen, J. Lin, Adv. Funct. Mater. 21, 911 (2011)

    Article  Google Scholar 

  13. R.W. Newson, J. Dean, B. Schmidt, H.M. van Driel, Opt. Express 17, 2326 (2009)

    Article  ADS  Google Scholar 

  14. F. Carbone, G. Aubock, A. Cannizzo, F. Van Mourik, R.R. Nair, A.K. Geim, K.S. Novoselov, M. Chergui, Chem. Phys. Lett. 504, 37 (2011)

    Article  ADS  Google Scholar 

  15. P.A. Obraztsov, M.G. Rybin, A.V. Tyurnina, S.V. Garnov, E.D. Obraztsova, A.N. Obraztsov, Y.P. Svirko, Nano Lett. 11, 1540 (2011)

    Article  ADS  Google Scholar 

  16. M. Breusing, S. Kuehn, T. Winzer, E. Malíc, F. Milde, N. Severin, J.P. Rabe, C. Ropers, A. Knorr, T. Elsaesser, Phys. Rev. B 83, 153410 (2011)

    Article  ADS  Google Scholar 

  17. C.H. Lui, K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 127404 (2010)

    Article  ADS  Google Scholar 

  18. W.-T. Liu, S.W. Wu, P.J. Schuck, M. Salmeron, Y.R. Shen, F. Wang, Phys. Rev. B 82, 081408 (2010)

    Article  ADS  Google Scholar 

  19. R.J. Stöhr, R. Kolesov, J. Pflaum, J. Wrachtrup, Phys. Rev. B 82, 121408 (2010)

    Article  ADS  Google Scholar 

  20. F. Varchon, R. Feng, J. Hass, X. Li, B. Ngoc Nguyen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E.H. Conrad, L. Magaud, Phys. Rev. Lett. 99, 126805 (2007)

    Article  ADS  Google Scholar 

  21. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  22. S. Fratini, F. Guinea, Phys. Rev. B 77, 195415 (2008)

    Article  ADS  Google Scholar 

  23. X. Du, I. Skachko, A. Barker, E.Y. Andrei, Nat. Nanotechnol. 3, 491 (2008)

    Article  ADS  Google Scholar 

  24. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008)

    Article  Google Scholar 

  25. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4268 (2009)

    Article  ADS  Google Scholar 

  26. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  27. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  28. Z. Ni, Y. Wang, T. Yu, Z. Shen, Nano Res. 1, 273 (2008)

    Article  Google Scholar 

  29. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Small 6, 195 (2010)

    Article  Google Scholar 

  30. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)

    Article  ADS  Google Scholar 

  31. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  32. G. Moos, C. Gah, R. Fasel, M. Wolf, T. Hertel, Phys. Rev. Lett. 87, 2674021 (2001)

    Article  Google Scholar 

  33. C.D. Spataru, M.A. Cazalilla, A. Rubio, L.X. Benedict, P.M. Echenique, S.G. Louie, Phys. Rev. Lett. 87, 2464051 (2001)

    Article  Google Scholar 

  34. C. Fürst, A. Leitenstorfer, A. Laubereau, R. Zimmermann, Phys. Rev. Lett. 78, 3733 (1997)

    Article  ADS  Google Scholar 

  35. Z. Wang, K. Reimann, M. Woerner, T. Elsaesser, D. Hofstetter, J. Hwang, W.J. Schaff, L.F. Eastman, Phys. Rev. Lett. 94, 037403 (2005)

    Article  ADS  Google Scholar 

  36. I. Calizo, S. Ghosh, W. Bao, F. Miao, C.N. Lau, A.A. Balandin, Solid State Commun. 149, 1132 (2009)

    Article  ADS  Google Scholar 

  37. D.J. Late, U. Maitra, L.S. Panchakarla, U.V. Waghmare, C.N.R. Rao, J. Phys., Condens. Matter 23, 055303 (2011)

    Article  ADS  Google Scholar 

  38. B.A. Ruzicka, N. Kumar, S. Wang, K.P. Loh, H. Zhao, J. Appl. Phys. 109, 084322 (2011)

    Article  ADS  Google Scholar 

  39. N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)

    Article  ADS  Google Scholar 

  40. H. Suzuura, T. Ando, Inst. Phys. Conf. Ser. 150, 022080 (2009)

    Article  ADS  Google Scholar 

  41. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Phys. Rev. B 78, 193404 (2008)

    Article  ADS  Google Scholar 

  42. G. Li, A. Luican, E.Y. Andrei, Phys. Rev. Lett. 102, 176804 (2009)

    Article  ADS  Google Scholar 

  43. V.W. Brar, S. Wickenburg, M. Panlasigui, C.-H. Park, T.O. Wehling, Y. Zhang, R. Decker, C. Girit, A.V. Balatsky, S.G. Louie, A. Zettl, M.F. Crommie, Phys. Rev. Lett. 104, 036805 (2010)

    Article  ADS  Google Scholar 

  44. J. Gonzalez, E. Perfetto, Phys. Rev. Lett. 101, 176802 (2008)

    Article  ADS  Google Scholar 

  45. B. Partoens, F.M. Peeters, Phys. Rev. B 74, 075404 (2006)

    Article  ADS  Google Scholar 

  46. V.N. Kotov, B. Uchoa, V.M. Pereira, A.H. Castro Neto, F. Guinea, arXiv:1012.3484v1 (2010)

  47. F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)

    Article  ADS  Google Scholar 

  48. A. Othonos, J. Appl. Phys. 83, 1789 (1998)

    Article  ADS  Google Scholar 

  49. G. Xing, H. Guo, X. Zhang, T.C. Sum, C.H.A. Huan, Opt. Express 18, 4564 (2010)

    Article  Google Scholar 

  50. T. Winzer, A. Knorr, E. Malic, Nano Lett. 10, 4839 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Maria-Elisabeth Michel-Beyerle for continuous support and Prof. Jianyi Lin for providing the CVD system. J. Shang thanks Dr. Zhiqiang Luo, Dr. Xiaofeng Fun and Mr. Jiaxu Yan for discussing the results. T. Yu thanks the support of the Singapore National Research Foundation under NRF Award No. NRF-RF2010-07 and MOE Tier 2 MOE2009-T2-1-037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Gurzadyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, J., Yu, T. & Gurzadyan, G.G. Femtosecond energy relaxation in suspended graphene: phonon-assisted spreading of quasiparticle distribution. Appl. Phys. B 107, 131–136 (2012). https://doi.org/10.1007/s00340-011-4853-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4853-0

Keywords

Navigation