Skip to main content
Log in

Temperature induced nonlinearity in coupled microresonators

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present here, our most recent results from theoretical and experimental investigations of optical properties of coupled microresonators. While fused silica spherical microresonators with Q-factors of about 107 to 108 can be quite easily fabricated, the production of a number of equally sized spheres, which appears to be a necessary condition for effective light coupling, has proved challenging. In order to bypass this problem we focus our attention on the investigation of coupled disk microresonators made of fused silica. These may be fabricated in almost arbitrary two-dimensional configuration with nanometer precision. A Q-factor of 105 can be routinely achieved, which relaxes the requirements on uniformity of the microdisks to within the range of fabrication accuracy. The achieved Q-factors are high enough to observe thermal nonlinear effects in the fabricated coupled disks. A detailed experimental analysis of the thermal nonlinear resonance behavior in a system of two coupled microdisks now follows. The results were found to be in good agreement with the respective calculations based on coupled mode theory including temperature induced nonlinear response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.B. Braginsky, M.L. Gorodetsky, V.S. Ilchenko, Phys. Lett. A 137, 393 (1989)

    Article  ADS  Google Scholar 

  2. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, R.A. Logan, Appl. Phys. Lett. 60, 289 (1992)

    Article  ADS  Google Scholar 

  3. V.S. Ilchenko, M.L. Gorodetsky, X.S. Yao, L. Maleki, Opt. Lett. 26, 256 (2001)

    Article  ADS  Google Scholar 

  4. V.S. Ilchenko, A.B. Matsko, IEEE J. Sel. Top. Quantum Electron. 12, 15 (2006)

    Article  Google Scholar 

  5. H.B. Lin, A.L. Huston, J.D. Eversole, A.J. Campillo, J. Opt. Soc. Am. B 7, 2079 (1990)

    Article  ADS  Google Scholar 

  6. S.M. Spillane, T.J. Kippenberg, K.J. Vahala, Nature 415, 621 (2002)

    Article  ADS  Google Scholar 

  7. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Phys. Rev. Lett. 93, 83904 (2004)

    Article  ADS  Google Scholar 

  8. V.B. Braginsky, Y.I. Vorontsov, K.S. Thorne, Science 209, 547 (1980)

    Article  ADS  Google Scholar 

  9. S.M. Spillane, T.J. Kippenberg, K.J. Vahala, K.W. Goh, E. Wilcut, H.J. Kimble, Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  10. T.J. Kippenberg, K.J. Vahala, Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  11. L.I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, A. Tunnermann, Phys. Rev. A 77, 051801(R) (2008)

    Article  ADS  Google Scholar 

  12. Z. Chen, A. Taflove, V. Backman, Opt. Lett. 31, 389 (2006)

    Article  ADS  Google Scholar 

  13. L.I. Deych, O. Roslyak, Phys. Rev. E 73, 036606 (2006)

    Article  ADS  Google Scholar 

  14. L.I. Deych, C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, Appl. Phys. B 93, 21 (2008)

    Article  ADS  Google Scholar 

  15. Y. Hara, T. Mukaiyama, K. Takeda, M. Kuwata-Gonokami, Phys. Rev. Lett. 94, 203905 (2005)

    Article  ADS  Google Scholar 

  16. A. Naweed, G. Farca, S.I. Shopova, A.T. Rosenberger, Phys. Rev. A 71, 43804 (2005)

    Article  ADS  Google Scholar 

  17. S.P. Ashili, V.N. Astratov, E.C.H. Sykes, Opt. Express 14, 9460 (2006)

    Article  ADS  Google Scholar 

  18. K. Totsuka, N. Kobayashi, M. Tomita, Phys. Rev. Lett. 98, 213904 (2007)

    Article  ADS  Google Scholar 

  19. V.N. Astratov, J.P. Franchak, S.P. Ashili, Appl. Phys. Lett. 85, 5508 (2004)

    Article  ADS  Google Scholar 

  20. B.M. Möller, U. Woggon, M.V. Artemyev, Phys. Rev. B 75, 245327 (2007)

    Article  ADS  Google Scholar 

  21. S. Boriskina, J. Opt. Soc. Am. B 23, 1565 (2006)

    Article  ADS  Google Scholar 

  22. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, IEEE J. Sel. Top. Quantum Electron. 12, 78 (2006)

    Article  Google Scholar 

  23. A. Yariv, Y. Xu, R.K. Lee, A. Scherer, Opt. Lett. 24, 711 (1999)

    Article  ADS  Google Scholar 

  24. J.K.S. Poon, J. Scheuer, Y. Xu, A. Yariv, J. Opt. Soc. Am. B 21, 1665 (2004)

    Article  ADS  Google Scholar 

  25. A.A. Savchenkov, V.S. Ilchenko, A.B. Matsko, L. Maleki, IEEE Photonics Technol. Lett. 17, 136(2005)

    Article  ADS  Google Scholar 

  26. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, V. Shuvayev, L.I. Deych, T. Pertsch, Phys. Rev. B 80, 043841 (2009)

    Article  ADS  Google Scholar 

  27. I.S. Grudinin, K.J. Vahala, Opt. Express 17, 14088 (2009)

    Article  ADS  Google Scholar 

  28. N. Ahkmediev, A. Ankiewicz, Dissipative Solitons (Springer, Berlin, 2005)

    Book  Google Scholar 

  29. V.S. Ilchenko, M.L. Gorodetsky, Laser Phys. 2, 1004 (1992)

    Google Scholar 

  30. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, L.I. Deych, Opt. Express 16, 6285 (2008)

    Article  ADS  Google Scholar 

  31. A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, Opt. Quantum Electron. 39, 1253 (2007)

    Article  Google Scholar 

  32. J.C. Knight, G. Cheung, F. Jacques, T.A. Birks, Opt. Lett. 22, 1129 (1997)

    Article  ADS  Google Scholar 

  33. S.M. Spillane, T.J. Kippenberg, O.J. Painter, K.J. Vahala, Phys. Rev. Lett. 91, 43902 (2003)

    Article  ADS  Google Scholar 

  34. H.A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, New York, 1984)

    Google Scholar 

  35. A.E. Fomin, M.L. Gorodetsky, I.S. Grudinin, V.S. Ilchenko, J. Opt. Soc. Am. B 22, 459 (2005)

    Article  ADS  Google Scholar 

  36. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, T. Pertsch, Opt. Lett. 35, 3351 (2010)

    Article  ADS  Google Scholar 

  37. M. Borselli, T.J. Johnson, O. Painter, Opt. Express 13, 1515 (2005)

    Article  ADS  Google Scholar 

  38. R.W. Boyd, Nonlinear Optics (Academic Press, London, 2003)

    Google Scholar 

  39. T. Carmon, L. Yang, K.J. Vahala, Opt. Express 12, 4742 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, C., Chipouline, A., Käsebier, T. et al. Temperature induced nonlinearity in coupled microresonators. Appl. Phys. B 104, 503–511 (2011). https://doi.org/10.1007/s00340-011-4636-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4636-7

Keywords

Navigation