Skip to main content
Log in

Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel kind of plasmonic wavelength demultiplexers (WDMs) based on two-dimensional metal–insulator–metal waveguides with side coupled nanocavities (SCNCs) is proposed and numerically investigated. The WDMs contain three waveguide output channels, each of which functions as a dual-stopband plasmonic filter. The demultiplexing wavelengths can be tuned by controlling the lengths and widths of SCNCs. The finite-difference time-domain results can be accurately analyzed by the resonant theory of nanocavity. Our structures have important potential applications for design of WDM systems in highly integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Nature 440, 508 (2006)

    Article  ADS  Google Scholar 

  3. D. Gramotnev, S. Bozhevolnyi, Nat. Photonics 4, 83 (2010)

    Article  ADS  Google Scholar 

  4. B. Wang, G.P. Wang, Opt. Lett. 29, 1992 (2004)

    Article  ADS  Google Scholar 

  5. G.A. Wurtz, R. Pollard, A.V. Zayats, Phys. Rev. Lett. 97, 057402 (2006)

    Article  ADS  Google Scholar 

  6. A. Evlyukhin, S. Bozhevolnyi, A. Stepanov, J. Krenn, Appl. Phys. B 84, 29 (2006)

    Article  ADS  Google Scholar 

  7. T. Nikolajsen, K. Leosson, S.I. Bozhevolnyi, Appl. Phys. Lett. 85, 5833 (2004)

    Article  ADS  Google Scholar 

  8. C. Min, P. Wang, X. Jiao, Y. Deng, H. Ming, Appl. Phys. B 90, 97 (2008)

    Article  ADS  Google Scholar 

  9. L.L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, J. Hua, U. Welp, D.E. Brown, C.W. Kimball, Nano Lett. 5, 1399 (2005)

    Article  ADS  Google Scholar 

  10. D.V. Oosten, M. Spasenovic, L. Kuipers, Nano Lett. 10, 286 (2010)

    Article  ADS  Google Scholar 

  11. S.Y. Yang, W.B. Chen, R.L. Nelson, Q.W. Zhan, Opt. Lett. 34, 3047 (2009)

    Article  Google Scholar 

  12. I.D. Leon, P. Berini, Nat. Photonics 10, 1 (2010)

    Google Scholar 

  13. Q.Q. Gan, Y.J. Ding, F.J. Bartoli, Phys. Rev. Lett. 102, 056801 (2009)

    Article  ADS  Google Scholar 

  14. J. Park, H. Kim, B. Lee, Opt. Express 16, 413 (2008)

    Article  ADS  Google Scholar 

  15. B. Wang, G.P. Wang, Appl. Phys. Lett. 87, 013107 (2005)

    Article  ADS  Google Scholar 

  16. S. Randhawa, M.U. González, J. Renger, S. Enoch, R. Quidant, Opt. Express 18, 14496 (2010)

    Article  ADS  Google Scholar 

  17. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, T.W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005)

    Article  ADS  Google Scholar 

  18. B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 79, 51 (2001)

    Article  ADS  Google Scholar 

  19. L. Poladian, Opt. Lett. 26, 7 (2001)

    Article  ADS  Google Scholar 

  20. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs, Nat. Photonics 3, 283 (2009)

    Article  ADS  Google Scholar 

  21. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Phys. Rev. B 73, 035407 (2006)

    Article  ADS  Google Scholar 

  22. X.S. Lin, X.G. Huang, Opt. Lett. 33, 2874 (2008)

    Article  ADS  Google Scholar 

  23. A. Hosseini, Y. Massoud, Appl. Phys. Lett. 90, 181102 (2007)

    Article  ADS  Google Scholar 

  24. Q. Zhang, X.G. Huang, X.S. Lin, J. Tao, X.P. Jin, Opt. Express 17, 7549 (2009)

    Article  ADS  Google Scholar 

  25. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, J. Phys., Condens. Matter 21, 375301 (2009)

    Article  Google Scholar 

  26. H. Lu, X.M. Liu, D. Mao, L.R. Wang, Y.K. Gong, Opt. Express 18, 17922 (2010)

    Article  ADS  Google Scholar 

  27. G. Wang, H. Lu, X. Liu, D. Mao, L. Duan, Opt. Express 19, 3513 (2011)

    Article  ADS  Google Scholar 

  28. I. Chremmos, J. Opt. Soc. Am. A 26, 2623 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F.R. Aussenegg, J.R. Krenn, Nano Lett. 7, 1697 (2007)

    Article  ADS  Google Scholar 

  30. A. Noual, A. Akjouj, Y. Pennec, J.N. Gillet, B. Djafari-Rouhani, New J. Phys. 11, 103020 (2009)

    Article  ADS  Google Scholar 

  31. M.S. Kumar, X. Piao, S. Koo, S. Yu, N. Park, Opt. Express 18, 8800 (2010)

    Article  ADS  Google Scholar 

  32. Y. Gong, L. Wang, X. Hu, X. Li, X. Liu, Opt. Express 17, 13727 (2009)

    Article  ADS  Google Scholar 

  33. Z. Zhong, Y. Xu, S. Lan, Q. Dai, L. Wu, Opt. Express 18, 79 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Liu, X.M., Wang, L.R. et al. Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides. Appl. Phys. B 103, 877–881 (2011). https://doi.org/10.1007/s00340-011-4525-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4525-0

Keywords

Navigation