Skip to main content
Log in

Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) has demonstrated powerful potential for trace-gas detection based on its unique combination of high bandwidth, rapid data acquisition, high sensitivity, and high resolution, which is unavailable with conventional systems. However, previous demonstrations have been limited to proof-of-principle experiments or studies of fundamental laboratory science. Here, we present the development of CE-DFCS towards an industrial application—measuring impurities in arsine, an important process gas used in III–V semiconductor compound manufacturing. A strongly absorbing background gas with an extremely complex, congested, and broadband spectrum renders trace detection exceptionally difficult, but the capabilities of CE-DFCS overcome this challenge and make it possible to identify and quantify multiple spectral lines associated with water impurities. Further, frequency combs allow easy access to new spectral regions via efficient nonlinear optical processes. Here, we demonstrate detection of multiple potential impurities across 1.75–1.95 μm (5710–5130 cm−1), with a single-channel detection sensitivity (simultaneously over 2000 channels) of ∼4×10−8 cm−1 Hz−1/2 in nitrogen and, specifically, an absorption sensitivity of ∼4×10−7 cm−1 Hz−1/2 for trace water doped in arsine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Lehman, K.A. Bertness, J.T. Hodges, J. Cryst. Growth 250, 262 (2003)

    Article  ADS  Google Scholar 

  2. H.H. Funke, B.L. Grissom, C.E. McGrew, M.W. Raynor, Rev. Sci. Instrum. 74, 1 (2003)

    Article  Google Scholar 

  3. H.H. Funke, M.W. Raynor, K.A. Bertness, Y. Chen, Appl. Spectrosc. 61, 419 (2007)

    Article  ADS  Google Scholar 

  4. J. Feng, R. Clement, M. Raynor, J. Cryst. Growth 310, 4780 (2008)

    Article  ADS  Google Scholar 

  5. P.R. Griffiths, J.A.D. Haseth, Fourier Transform Infrared Spectroscopy (Wiley-Interscience, Hoboken, 2007)

    Book  Google Scholar 

  6. K. Siefering, H. Berger, W. Whitlock, J. Vac. Sci. Technol. A 11, 1593 (1993)

    Article  ADS  Google Scholar 

  7. S.Y. Lehman, K.A. Bertness, J.T. Hodges, J. Cryst. Growth 261, 225 (2004)

    Article  ADS  Google Scholar 

  8. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  9. M.J. Thorpe, J. Ye, Appl. Phys. B, Lasers Opt. 91, 397 (2008)

    Article  ADS  Google Scholar 

  10. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16, 2387 (2008)

    Article  ADS  Google Scholar 

  11. S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spectrosc. 58, 1452 (2004)

    Article  ADS  Google Scholar 

  12. R. Wehr, S. Kassi, D. Romanini, L. Gianfrani, Appl. Phys. B, Lasers Opt. 92, 459 (2008)

    Article  ADS  Google Scholar 

  13. M.H. Dunn, M. Ebrahimzadeh, Science 286, 1513 (1999)

    Article  Google Scholar 

  14. M. Hamilton, R. Peverall, G. Ritchie, L. Thornton, J. van Helden, Appl. Phys. B, Lasers Opt. 97, 715 (2009)

    Article  ADS  Google Scholar 

  15. L.E. Nelson, D.J. Jones, K. Tamura, H.A. Haus, E.P. Ippen, Appl. Phys. B, Lasers Opt. 65, 277 (1997)

    Article  ADS  Google Scholar 

  16. M. Shirasaki, Opt. Lett. 21, 366 (1996)

    Article  ADS  Google Scholar 

  17. S. Xiao, A.M. Weiner, Opt. Express 12, 2895 (2004)

    Article  ADS  Google Scholar 

  18. S.A. Diddams, L. Hollberg, V. Mbele, Nature 445, 627 (2007)

    Article  Google Scholar 

  19. C.C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  20. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.E. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Simeckova, M.A.H. Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. Vander Auwera, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  21. A. Hubaux, G. Vos, Anal. Chem. 42, 849 (1970)

    Article  Google Scholar 

  22. G.L. Long, J.D. Winefordner, Anal. Chem. 55, 712A (1983)

    Article  Google Scholar 

  23. SEMI Standard, C10-1109, Guide for Determination of Method Detection Limits. Available from Semiconductor Equipment and Materials International, 3081 Zanker Road, San Jose, CA 95134, USA. http://www.semi.org

  24. K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Appl. Opt. 48, 2966 (2009)

    Article  ADS  Google Scholar 

  25. F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29, 1542 (2004)

    Article  ADS  Google Scholar 

  26. A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13, 9029 (2005)

    Article  ADS  Google Scholar 

  27. I. Coddington, W.C. Swan, N.R. Newbury, Phys. Rev. Lett. 100, 013902 (2008)

    Article  ADS  Google Scholar 

  28. B. Berhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Nat. Photonics 4, 55 (2010)

    Article  ADS  Google Scholar 

  29. F. Adler, K.C. Cossel, M.J. Thorpe, I. Hartl, M.E. Fermann, J. Ye, Opt. Lett. 34, 1330 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Cossel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cossel, K.C., Adler, F., Bertness, K.A. et al. Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 100, 917–924 (2010). https://doi.org/10.1007/s00340-010-4132-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4132-5

Keywords

Navigation