Skip to main content
Log in

CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A laser-induced fluorescence diagnostic is presented for high-speed measurements in gaseous flows. The technique employs a toluene tracer excited at 266 nm by a cavity-doubled 532 nm diode-pumped 5.5 W CW laser. The high power (600 mW) of UV light produced by cavity doubling, together with the high fluorescence yield of toluene, yields strong signal levels needed for high-speed recording. Fluctuation detection limits for tracer mole fraction were investigated by applying the diagnostic to an atmospheric temperature and pressure nitrogen jet. For single-point measurements with a photomultiplier tube, the detection limit for fluctuations in the toluene mole fraction was 0.028%, achieved with 430 mW of laser power and 8.5 kHz bandwidth for a 1×0.4×0.4 mm collection volume. Line (1-D) imaging with a kinetic-readout camera (512 pixels/row) achieved a detection limit of 0.23% with 440 mW of laser power, 9.7 kHz frame rate, and 0.3×0.2×0.4 mm collection volume per pixel, while planar (2-D) imaging with a 512×512 pixel intensified camera achieved a detection limit of 0.88% with 205 mW of laser power, 100 μs exposure time, and 0.4×0.4×0.4 mm volume per pixel. Line and planar imaging were applied to a turbulent jet with Re of about 10000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. C.F. Kaminski, J. Hult, M. Alden, Appl. Phys. B 68, 757 (1999)

    Article  ADS  Google Scholar 

  3. J.D. Smith, V. Sick, Appl. Phys. B 81, 579 (2005)

    Article  ADS  Google Scholar 

  4. N. Jiang, W.R. Lempert, Opt. Lett. 33, 2236 (2008)

    Article  ADS  Google Scholar 

  5. B. Hiller, R.K. Hanson, Appl. Opt. 27, 33 (1988)

    Article  ADS  Google Scholar 

  6. M.D. DiRosa, A.Y. Chang, R.K. Hanson, Appl. Opt. 32, 4074 (1993)

    ADS  Google Scholar 

  7. A.Y. Chang, B.E. Battles, R.K. Hanson, Opt. Lett. 15, 706 (1990)

    Article  ADS  Google Scholar 

  8. C.S. Burton, W.A. Noyes, J. Chem. Phys. 49, 1705 (1968)

    Article  ADS  Google Scholar 

  9. J.D. Koch, R.K. Hanson, W. Koban, C. Schulz, Appl. Opt. 43, 5901 (2004)

    Article  ADS  Google Scholar 

  10. G.B. Porter, J. Chem. Phys. 32, 1587 (1960)

    Article  ADS  Google Scholar 

  11. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  12. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  13. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008)

    Article  ADS  Google Scholar 

  14. D.A. Rothamer, J.B. Ghandhi, SAE Technical Paper Series No. 2002-01-0748 (2002)

  15. D.R. Dowling, P.E. Dimotakis, J. Fluid Mech. 218, 109 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Cheung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, B.H., Hanson, R.K. CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows. Appl. Phys. B 98, 581–591 (2010). https://doi.org/10.1007/s00340-009-3785-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3785-4

PACS

Navigation