Skip to main content
Log in

Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have theorized that a photonic band gap can be induced in a submicron periodically poled LiNbO3 (SPPLN) with a uniform electrical field applied along the Y axis of the structure. The width of the band gap can be modulated by the intensity of the Y-directional electrical field. Moreover, for such a periodical structure with a duty cycle other than 0.5, the central location of the gap can be tuned by applying an additional electrical field along the Z axis of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2061 (1987)

    Article  ADS  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2488 (1987)

    Article  ADS  Google Scholar 

  3. E. Yablonovitch, T.J. Gmitter, K.M. Leung, Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)

    Article  ADS  Google Scholar 

  4. V. Berger, Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998)

    Article  ADS  Google Scholar 

  5. J. Armstrong, N. Bloembergen, J. Ducuing, P. Pershan, Interactions between light waves in a nonlinear dielectric. Phys. Rev. 127, 1918 (1962)

    Article  ADS  Google Scholar 

  6. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, Quasi-phase-matched optical parametric oscillation in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12, 2102–2116 (1995)

    Article  ADS  Google Scholar 

  7. K. Mizuuchi, K. Yamamoto, Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts. Opt. Lett. 23, 1880–1882 (1998)

    Article  ADS  Google Scholar 

  8. M. Yamada, N. Nada, M. Saitoh, K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett. 62, 435–436 (1993)

    Article  ADS  Google Scholar 

  9. Y.Q. Lu, Z.L. Wan, Q. Wang, Y.X. Xi, N.B. Ming, Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Appl. Phys. Lett. 77, 3719–3721 (2000)

    Article  ADS  Google Scholar 

  10. J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, Observation of solc-like filter in periodically poled lithium niobate. Electron. Lett. 39, 224–225 (2003)

    Article  Google Scholar 

  11. X.F. Chen, J.H. Shi, Y.P. Chen, Electro-optic solc-type wavelength filter in periodically poled lithium niobate. Opt. Lett. 28, 2115–2117 (2003)

    Article  ADS  Google Scholar 

  12. C. Canalias, V. Pasiskevicius, R. Clemens, F. Laurell, Submicron periodically poled flux-grown KTiOPO4. Appl. Phys. Lett. 82, 4233–4235 (2003)

    Article  ADS  Google Scholar 

  13. V. Dierolf, C. Sandmann, Direct-write method for domain inversion patterns in LiNbO3. Appl. Phys. Lett. 84, 3987–3989 (2004)

    Article  ADS  Google Scholar 

  14. M. Müller, E. Soergel, K. Buse, Influence of ultraviolet illumination on the poling characteristics of lithium niobate crystals. Appl. Phys. Lett. 83, 1824–1826 (2003)

    Article  ADS  Google Scholar 

  15. C.E. Validivia, C.L. Sons, J.G. Scott, S. Mailis, R.W. Eason, D.A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, I. Clark, Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination. Appl. Phys. Lett. 86, 022906 (2005)

    Article  ADS  Google Scholar 

  16. C. Canalias, V. Pasiskevicius, Mirrorless optical parametric oscillator. Nat. Photonics 1, 459–462 (2007)

    Article  ADS  Google Scholar 

  17. N.G.R. Broderick, G.W. Ross, H.L. Offerhaus, D.J. Richardson, D.C. Hanna, Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345 (2000)

    Article  ADS  Google Scholar 

  18. L. Arizmendi, Photonic applications of lithium niobate crystals. Phys. Status Solidi A 201, 253–283 (2004)

    Article  ADS  Google Scholar 

  19. P. Yeh, Electromagnetic propagation in birefringent layered media. J. Opt. Soc. Am. 69, 742–755 (1978)

    Article  ADS  Google Scholar 

  20. A. Mandatori, C. Sibilia, M. Centini, G. D’Aguanno, M. Bertolotti, M. Scalora, M. Bloemer, C.M. Bowden, Birefringence in one-dimensional finite photonic bandgap structure. J. Opt. Soc. Am. B 20, 504–513 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Shi, J. & Chen, X. Electrically induced and tunable photonic band gap in submicron periodically poled lithium niobate. Appl. Phys. B 96, 787–791 (2009). https://doi.org/10.1007/s00340-009-3622-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3622-9

PACS

Navigation