Skip to main content
Log in

A narrow linewidth and frequency-stable probe laser source for  the 88Sr+ single ion optical frequency standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we describe in detail a narrow linewidth and frequency-stable laser source used to probe the 5s 2 S 1/2–4d 2 D 5/2 clock transition of the 88Sr+ optical frequency standard. The performance of the laser system is investigated with studies of its frequency drift rates and with high resolution spectra of the 88Sr+ clock transition. The observed short-term drift rates are typically in the range of 10 to 23 mHz/s, and the current long-term drift rate is 13.9(3) mHz/s. The laser stability, after subtraction of linear drifts, reaches 5×10−16 at an averaging time of 3000 s. This high level of stability is attributed for the most part to stabilization of the reference cavity at the temperature where the coefficient of linear thermal expansion crosses zero. An upper bound for the laser linewidth is given by the observation of a Fourier-transform limited resonance of 4.3 Hz (Δν/ν=1×10−14) on the 88Sr+ clock transition. The effective averaging time during the linewidth measurements was about 100 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland, J.C. Bergquist, Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  2. A.D. Ludlow, T. Zelevinsky, G.K. Campbell, S. Blatt, M.M. Boyd, M.H.G. de Miranda, M.J. Martin, J.W. Thomsen, S.M. Foreman, J. Ye, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, Y.L. Coq, Z.W. Barber, N. Poli, N.D. Lemke, K.M. Beck, C.W. Oates, Science 319, 1805 (2008)

    Article  ADS  Google Scholar 

  3. H.S. Margolis, G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, P. Gill, Science 306, 1355 (2004)

    Article  Google Scholar 

  4. A.A. Madej, J.E. Bernard, P. Dubé, L. Marmet, R.S. Windeler, Phys. Rev. A 70, 012507 (2004)

    Article  ADS  Google Scholar 

  5. W.M. Itano, J.C. Bergquist, J.J. Bollinger, J.M. Gilligan, D.J. Heinzen, F.L. Moore, M.G. Raizen, D.J. Wineland, Phys. Rev. A 47, 3554 (1993)

    Article  ADS  Google Scholar 

  6. J. Bernard, A. Madej, P. Dubé, L. Marmet, A. Czajkowski, R. Windeler, in Proceedings of the 2003 Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, ed. by J.R. Vig (IEEE Press, Piscataway, 2003), pp. 162–167

    Chapter  Google Scholar 

  7. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  8. D.S. Elliott, R. Roy, S.J. Smith, Phys. Rev. A 26, 12 (1982)

    Article  ADS  Google Scholar 

  9. M. Zhu, J.L. Hall, J. Opt. Soc. Am. B 10, 802 (1993)

    Article  ADS  Google Scholar 

  10. K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)

    Article  ADS  Google Scholar 

  11. M. Notcutt, L.-S. Ma, A.D. Ludlow, S.M. Foreman, J. Ye, J.L. Hall, Phys. Rev. A 73, 031804 (2006)

    Article  ADS  Google Scholar 

  12. T. Nazarova, F. Riehle, U. Sterr, Appl. Phys. B 83, 531 (2006)

    Article  ADS  Google Scholar 

  13. A.D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S.M. Foreman, M.M. Boyd, S. Blatt, J. Ye, Opt. Lett. 32, 641 (2007)

    Article  ADS  Google Scholar 

  14. S.A. Webster, M. Oxborrow, S. Pugla, J. Millo, P. Gill, Phys. Rev. A 77, 033847 (2008)

    Article  ADS  Google Scholar 

  15. J. Alnis, A. Matveev, N. Kolachevsky, T. Udem, T.W. Hänsch, Phys. Rev. A 77, 053809 (2008)

    Article  ADS  Google Scholar 

  16. L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994)

    Article  ADS  Google Scholar 

  17. B.C. Young, R.J. Rafac, J.A. Beall, F.C. Cruz, W.M. Itano, D.J. Wineland, J.C. Bergquist, in Laser Spectroscopy XIV International Conference, ed. by R. Blatt, J. Eschner, D. Leibfried, F. Schmidt-Kaler (World Scientific, Singapore, 1999), pp. 61–70

    Google Scholar 

  18. L. Chen, J.L. Hall, J. Ye, T. Yang, E. Zang, T. Li, Phys. Rev. A 74, 053801 (2006)

    Article  ADS  Google Scholar 

  19. J. Hall, M. Notcutt, J. Ye, in Proceedings of the XVII International Conference on Laser Spectroscopy, ed. by E. Hinds, A. Ferguson, E. Riis (World Scientific, Singapore, 2006), pp. 3–13

    Google Scholar 

  20. J.C. Bergquist, W.M. Itano, D.J. Wineland, in Proceedings of the International School of Physics “E. Fermi”, Course CXX, Frontiers in Laser Spectroscopy, ed. by T.W. Hänsch, M. Inguscio (North Holland, Amsterdam, 1994), pp. 359–376

    Google Scholar 

  21. M. De Rosa, L. Conti, M. Cerdonio, M. Pinard, F. Marin, Phys. Rev. Lett. 89, 237402 (2002)

    Article  ADS  Google Scholar 

  22. M. Notcutt, C.T. Taylor, A.G. Mann, D.G. Blair, J. Phys. D, Appl. Phys. 28, 1807 (1995)

    Article  ADS  Google Scholar 

  23. J. Spangenberg-Jolley, Astrophys. Space Sci. 160, 199 (1989)

    Article  ADS  Google Scholar 

  24. L. Marmet, A.A. Madej, K.J. Siemsen, J.E. Bernard, B.G. Whitford, IEEE Trans. Instrum. Meas. 46, 169 (1997)

    Article  Google Scholar 

  25. E. Riis, A.G. Sinclair, J. Phys. B, At. Mol. Opt. Phys. 37, 4719 (2004)

    Article  ADS  Google Scholar 

  26. C. Champenois, M. Houssin, C. Lisowski, M. Knoop, G. Hagel, M. Vedel, F. Vedel, Phys. Lett. A 331, 298 (2004)

    Article  ADS  Google Scholar 

  27. E. Peik, T. Schneider, C. Tamm, J. Phys. B, At. Mol. Opt. Phys. 39, 145 (2006)

    Article  ADS  Google Scholar 

  28. J.W. Berthold, S.F. Jacobs, M.A. Norton, Metrologia 13, 9 (1977)

    Article  ADS  Google Scholar 

  29. M. Zhu, J. Hall, in Proceedings of the 1992 Frequency Control Symposium (IEEE, New York, 1992), pp. 44–55

    Chapter  Google Scholar 

  30. C. Tamm, T. Schneider, E. Peik, in Proceedings of the 6th Symposium on Frequency Standards and Metrology, ed. by P. Gill (World Scientific, Singapore, 2002), pp. 369–375

    Google Scholar 

  31. H. Stoehr, F. Mensing, J. Helmcke, U. Sterr, Opt. Lett. 31, 736 (2006)

    Article  ADS  Google Scholar 

  32. J.E. Bernard, L. Marmet, A.A. Madej, Opt. Commun. 150, 170 (1998)

    Article  Google Scholar 

  33. P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, J.-S. Boulanger, S. Cundy, Phys. Rev. Lett. 95, 033001 (2005)

    Article  ADS  Google Scholar 

  34. P. Dubé, A.A. Madej, J.E. Bernard, A.D. Shiner, in Proceedings of the IEEE International Frequency Control Symposium and Exposition (IEEE, 2006), pp. 409–414

  35. J. Rutman, Proc. IEEE 66, 1048 (1978)

    Article  ADS  Google Scholar 

  36. A. Shiner, Masters Thesis, York University, Toronto, 2006

  37. V. Letchumanan, P. Gill, E. Riis, A.G. Sinclair, Phys. Rev. A 70, 033419 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dubé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubé, P., Madej, A.A., Bernard, J.E. et al. A narrow linewidth and frequency-stable probe laser source for  the 88Sr+ single ion optical frequency standard. Appl. Phys. B 95, 43–54 (2009). https://doi.org/10.1007/s00340-009-3390-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3390-6

PACS

Navigation