Skip to main content
Log in

Ge nanoclusters in PECVD-deposited glass caused only by heat treatment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports the formation of Ge nanoclusters in a multi-layer structure consisting of alternating thin films of Ge-doped silica glass and SiGe, deposited by plasma-enhanced chemical vapor deposition (PECVD) and post annealed at 1100 °C in N2 atmosphere. We studied the annealed samples by transmission electron microscopy (TEM) and Raman spectroscopy. As-deposited and annealed samples were analyzed by secondary ion mass spectroscopy (SIMS). TEM investigation shows that Ge nanoclusters were formed in the as-deposited SiGe layer and the SiGe layer was transformed into a silicon dioxide layer embedded with Ge nanoclusters after annealing. These nanoclusters are crystalline and varied in size. There were no clusters in the Ge-doped glass layer. Raman spectra verified the existence of crystalline Ge clusters. The positional shift of the Ge vibrational peak with the change of the focus depth indicates that the distribution of the stress applied to the Ge clusters varies with depth. SIMS measurements show clearly the dramatic O increase in the as-deposited SiGe layer after annealing. The creation of Ge nanoclusters by the combination of PECVD and annealing makes possible the application in complicated waveguide components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Heng, Y.J. Liu, A.T.S. Wee, T.G. Finstad, J. Cryst. Growth 262, 95 (2004)

    Article  Google Scholar 

  2. J.H. Wu, P.W. Li, Semicond. Sci. Technol. 22, 89 (2007)

    Article  ADS  Google Scholar 

  3. T.V. Torchynska, J. Aguilar-Hernandex, L. Schacht Hernandez, G. Polupan, Y. Goldstein, A. Many, J. Jedrzejewski, A. Kolobov, Microelectron. Eng. 66, 83 (2003)

    Article  Google Scholar 

  4. A.K. Dutta, Appl. Phys. Lett. 68, 1189 (1996)

    Article  ADS  Google Scholar 

  5. Y. Maeda, N. Tsukamoto, Y. Yazawa, Appl. Phys. Lett. 59, 3168 (1991)

    Article  ADS  Google Scholar 

  6. W.K. Choi, Y.W. Ho, S.P. Ng, V. Ng, J. Appl. Phys. 89, 2168 (2001)

    Article  ADS  Google Scholar 

  7. H. Yang, X. Yao, S. Xie, X. Wang, S. Liu, Y. Fang, X. Gu, F. Wang, Opt. Mater. 27, 725 (2005)

    Article  ADS  Google Scholar 

  8. A. Rodriguez, M.I. Ortiz, J. Sangrador, T. Rodriguez, M. Avella, A.C. Prieto, A. Torres, J. Jimenez, A. Kling, C. Ballesteros, Nanotechnology 18, 065702 (2007)

    Article  ADS  Google Scholar 

  9. Y. Maeda, Phys. Rev. B 51, 1658 (1995)

    Article  ADS  Google Scholar 

  10. A. Dowd, R.G. Elliman, M. Samoc, B. Luther-Davies, Appl. Phys. Lett. 74, 239 (1999)

    Article  ADS  Google Scholar 

  11. H.P. Li, C.H. Kam, Y.L. Lam, Y.X. Jie, W. Ji, A.T.S. Wee, C.H.A. Huan, Appl. Phys. B 72, 611 (2001)

    ADS  Google Scholar 

  12. L.P. Yue, Y.Z. He, J. Mater. Sci. Lett. 15, 263 (1996)

    Article  Google Scholar 

  13. Y.X. Jie, Y.N. Xiong, A.T.S. Wee, C.H.A. Huan, W. Ji, Appl. Phys. Lett. 77, 3926 (2000)

    Article  ADS  Google Scholar 

  14. A.V. Kolobov, S.Q. Wei, W.S. Yan, H. Oyanagi, Y. Maeda, K. Tanaka, Phys. Rev. B 67, 195314 (2003)

    Article  ADS  Google Scholar 

  15. J. Skov Jensen, T.P. Leervad Pedersen, J. Chevallier, B. Bech Nielsen, A. Nylandsted Larsen, Nanotechnology 17, 2621 (2006)

    Article  ADS  Google Scholar 

  16. H.G. Chew, F. Zheng, W.K. Choi, W.K. Chim, Y.L. Foo, E.A. Fitzgerald, Nanotechnology 18, 065302 (2007)

    Article  ADS  Google Scholar 

  17. J. Von Borany, R. Grötzschel, K.H. Heinig, A. Markwitz, W. Matz, B. Schmidt, W. Skorupa, Appl. Phys. Lett. 71, 3215 (1997)

    Article  ADS  Google Scholar 

  18. K.H. Heinig, B. Schmidt, A. Markwitz, R. Grötzschel, M. Strobel, S. Oswald, Nucl. Instrum. Methods Phys. Res. B 148, 969 (1999)

    Article  ADS  Google Scholar 

  19. A. Markwitz, B. Schmidt, W. Matz, R. Grötzschel, A. Mücklich, Nucl. Instrum. Methods Phys. Res. B 142, 338 (1998)

    Article  ADS  Google Scholar 

  20. J.M.J. Lopes, F.C. Zawislak, M. Behar, P.F.P. Fichtner, L. Rebohle, W. Skorupa, J. Appl. Phys. 94, 6059 (2003)

    Article  ADS  Google Scholar 

  21. S. Agan, A. Dana, A. Aydinli, J. Phys.: Condens. Matter 18, 5037 (2006)

    Article  ADS  Google Scholar 

  22. H. Ou, T.P. Rørdam, K. Rottwitt, F. Grumsen, A. Horsewell, R.W. Berg, Appl. Phys. B 87, 327 (2007)

    Article  ADS  Google Scholar 

  23. M. Fujii, S. Hayashi, K. Yamamoto, Japan. J. Appl. Phys. 30, 687 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ou.

Additional information

PACS

81.07.Bc; 78.66.Jg; 42.65.Wi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ou, H., Rørdam, T., Rottwitt, K. et al. Ge nanoclusters in PECVD-deposited glass caused only by heat treatment. Appl. Phys. B 91, 177–181 (2008). https://doi.org/10.1007/s00340-008-2942-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-2942-5

Keywords

Navigation