Skip to main content

Advertisement

Log in

Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

CO2, CH4, and N2O are recognised as the most important greenhouse gases, the concentrations of which increase rapidly through human activities. Space-borne integrated path differential absorption lidar allows global observations at day and night over land and water surfaces in all climates. In this study we investigate potential sources of measurement errors and compare them with the scientific requirements. Our simulations reveal that moderate-size instruments in terms of telescope aperture (0.5–1.5 m) and laser average power (0.4–4 W) potentially have a low random error of the greenhouse gas column which is 0.2% for CO2 and 0.4% for CH4 for soundings at 1.6 μm, 0.4% for CO2 at 2.1 μm, 0.6% for CH4 at 2.3 μm, and 0.3% for N2O at 3.9 μm. Coherent detection instruments are generally limited by speckle noise, while direct detection instruments suffer from high detector noise using current technology. The wavelength selection in the vicinity of the absorption line is critical as it controls the height region of highest sensitivity, the temperature cross-sensitivity, and the demands on frequency stability. For CO2, an error budget of 0.08% is derived from our analysis of the sources of systematic errors. Among them, the frequency stability of ± 0.3 MHz for the laser transmitter and spectral purity of 99.9% in conjunction with a narrow-band spectral filter of 1 GHz (FWHM) are identified to be challenging instrument requirements for a direct detection CO2 system operating at 1.6 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, D. Xiaosu, IPCC Third Assessment Report on Climate Change (Cambridge University Press, New York, 2001)

    Google Scholar 

  2. S. Houweling, F.-M. Breon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, P. Ciais, Atmosph. Chem. Phys. 4, 523 (2004)

    ADS  Google Scholar 

  3. K.R. Gurney, R.M. Law, A.S. Denning, P.J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.H. Chen, P. Ciais, S. Fan, I.Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B.C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, C.W. Yuen, Nature 415, 626 (2002)

    Article  ADS  Google Scholar 

  4. A. Chédin, R. Saunders, A. Hollingsworth, N. Scott, M. Matricardi, J. Etcheto, C. Clerbaux, R. Armante, C. Crevoisier, J. Geophys. Res. 108, 4064 (2003)

    Article  Google Scholar 

  5. R.J. Engelen, G.L. Stephens, J. Appl. Meteorol. 43, 373 (2004)

    Article  ADS  Google Scholar 

  6. S. Houweling, W. Hartmann, I. Aben, H. Schrijever, J. Skidmore, G.-J. Roelofs, F.-M. Breon, Atmosph. Chem. Phys. 5, 3003 (2005)

    ADS  Google Scholar 

  7. M. Buchwitz, R. de Beek, J.P. Burrows, H. Bovensmann, T. Warneke, J. Notholt, J.F. Meirink, A.P.H. Goede, P. Bergamaschi, S. Körner, M. Heimann, A. Schulz, Atmosph. Chem. Phys. 5, 941 (2005)

    ADS  Google Scholar 

  8. D. Crisp, R.M. Atlas, F.M. Bréon, L.R. Brown, J.P. Burrows, P. Ciais, B.J. Connor, S.C. Doney, I.Y. Fung, D.J. Jacob, C.E. Miller, D. O’Brien, S. Pawson, J.T. Randerson, P. Rayner, R.J. Salawitch, S.P. Sander, B. Sen, G.L. Stephens, P.P. Tans, G.C. Toon, P.O. Wennberg, S.C. Wofsy, Y.L. Yung, Z. Kuang, B. Chudasama, G. Sprague, B. Weiss, R. Pollock, D. Kenyon, S. Schroll, Adv. Space Res. 34, 700 (2004)

  9. R.T. Menzies, D.M. Tratt, Appl. Opt. 42, 6569 (2003)

    Article  ADS  Google Scholar 

  10. J. Bufton, T. Itabe, L.L. Strow, L.C. Korb, B.M. Gentry, C.Y. Weng, Appl. Opt. 22, 2592 (1983)

    ADS  Google Scholar 

  11. N. Sugimoto, A. Minato, Appl. Opt. 32, 6827 (1993)

    ADS  Google Scholar 

  12. R.A. Baumgartner, R.L. Byer, Appl. Opt. 17, 3555 (1978)

    ADS  Google Scholar 

  13. F. Gibert, P.H. Flamant, D. Bruneau, C. Loth, Appl. Opt. 45, 4448 (2006)

    Article  ADS  Google Scholar 

  14. M.J.T. Milton, T.D. Gardiner, F. Molero, J. Galech, Opt. Commun. 142, 153 (1997)

    Article  ADS  Google Scholar 

  15. A. Minato, D.M.A. Joarder, S. Ozawa, M. Kadoya, N. Sugimoto, Japan. J. Appl. Phys. 38, 6130 (1999)

    Article  ADS  Google Scholar 

  16. N. Menyuk, D.K. Killinger, Appl. Opt. 26, 3061 (1987)

    ADS  Google Scholar 

  17. A. Fix, G. Ehret, A. Hoffstädt, H.H. Klingenberg, C. Lemmerz, P. Mahnke, M. Ulbricht, M. Wirth, R. Wittig, W. Zirnig, in Proc. 22nd Int. Laser Radar Conf., ESA SP-561, European Space Agency, Paris (2004), p. 45

  18. A.I. Karapuzikov, I.V. Ptashnik, O.A. Romanovskii, O.V. Kharchenko, I.V. Sherstov, Atmosph. Ocean. Opt. 12, 350 (1999)

    Google Scholar 

  19. G.J. Koch, B.W. Barmes, M. Petros, J.-Y. Beyon, F. Amzajerdian, J. Yu, R.E. Davis, S. Ismail, S. Vay, M.J. Kavaya, U.N. Singh, Appl. Opt. 43, 5092 (2004)

    Article  ADS  Google Scholar 

  20. E.R. Murray, J.E. van der Laan, J.G. Hawley, Appl. Opt. 15, 3140 (1976)

    ADS  Google Scholar 

  21. J. Altmann, W. Lahmann, C. Weitkamp, Appl. Opt. 19, 3453 (1980)

    Article  ADS  Google Scholar 

  22. J.D. Spinhirne, S.P. Palm, W.D. Hart, D.L. Hlavka, E.J. Welton, Geophys. Res. Lett. 32, L22S03 (2005)

  23. M.J. McGill, L. Li, W.D. Hart, G.M. Heymsfield, D.L. Hlavka, P.E. Racette, L. Tian, M.A. Vaughan, D.M. Winker, J. Geophys. Res. 109, D07203 (2004)

    Article  Google Scholar 

  24. Rep. Assess. ESA SP-1257(1), European Space Agency, September 2001

  25. A. Stoffelen, J. Pailleux, E. Källén, J.M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, P. Ingmann, Bull. Am. Meteorol. Soc. 86, 73 (2005)

    Article  ADS  Google Scholar 

  26. Rep. Assess. ESA SP-1257(2), European Space Agency, September 2001

  27. E.E. Remsberg, L.L. Gordley, Appl. Opt. 17, 624 (1978)

    ADS  Google Scholar 

  28. F. Gibert, P.H. Flamant, C. Loth, D. Bruneau, in Sixth Int. Symp. Tropospheric Profiling, Needs and Technologies (ISTP), Leipzig, Germany, September 2003, pp. 249–251

  29. G. Ehret, C. Kiemle, Final Rep. ESA Study 10880/03/NL/FF (2005)

  30. W.B. Grant, Appl. Opt. 21, 2390 (1982)

    ADS  Google Scholar 

  31. M.J. Kavaya, R.T. Menzies, D.A. Haner, U.P. Oppenheimer, P.H. Flamant, Appl. Opt. 22, 2619 (1983)

    ADS  Google Scholar 

  32. E. Dufour, F.M. Bréon, Appl. Opt. 42, 3595 (2003)

    Article  ADS  Google Scholar 

  33. M. Endemann, ESA Rep., Contract No. 4868/81/NL/HP(SC) (1983)

  34. R.E. Warren, Appl. Opt. 24, 3541 (1985)

    Article  ADS  Google Scholar 

  35. G. Biernson, R.F. Lucy, Proc. IEEE 51, 202 (1963)

    Article  Google Scholar 

  36. B.J. Rye, R.M. Hardesty, Appl. Opt. 36, 9425 (1997)

    Article  ADS  Google Scholar 

  37. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K. Chance, K. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 60, 665 (1998)

    Article  ADS  Google Scholar 

  38. F. Schreier, J. Quant. Spectrosc. Radiat. Transf. 48, 743 (1992)

    Article  ADS  Google Scholar 

  39. B. Mayer, A. Kylling, Atmosph. Chem. Phys. 5, 1855 (2005)

    Article  ADS  Google Scholar 

  40. J. Henningsen, H. Simonsen, J. Mol. Spectrosc. 203, 16 (2000)

    Article  ADS  Google Scholar 

  41. T. Schröder, C. Lemmerz, O. Reitebuch, M. Wirth, C. Wührer, R. Treichel, Appl. Phys. B 87, 437 (2007)

    Article  ADS  Google Scholar 

  42. G. Ehret, C. Kiemle, W. Renger, G. Simmet, Appl. Opt. 32, 4534 (1993)

    ADS  Google Scholar 

  43. S. Ismail, E.V. Browell, Appl. Opt. 28, 3603 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ehret.

Additional information

PACS

42.68.Wt; 95.75.Qr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehret, G., Kiemle, C., Wirth, M. et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis. Appl. Phys. B 90, 593–608 (2008). https://doi.org/10.1007/s00340-007-2892-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2892-3

Keywords

Navigation