Skip to main content
Log in

Cavity cooling of translational and ro-vibrational motion of molecules: ab initio-based simulations for OH and NO

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present detailed calculations on the basis of our recent proposal for simultaneous cooling of the rotational, vibrational and external molecular degrees of freedom [1]. In this method, the molecular ro-vibronic states are coupled by an intense laser and an optical cavity via coherent Raman processes enhanced by the strong coupling with the cavity modes. For a prototype system, OH, we showed that the translational motion is cooled to a few μK and the molecule is brought to the internal ground state in about a second. Here, we investigate numerically the dependence of the cooling scheme on the molecular polarizability, selecting NO as a second example. Furthermore, we demonstrate the general applicability of the proposed cooling scheme to initially vibrationally and rotationally hot molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Morigi, P.W.H. Pinkse, M. Kowalewski, R. de Vivie-Riedle, Phys. Rev. Lett. 99, 073001 (2007)

    Article  ADS  Google Scholar 

  2. see J. Doyle, B. Friedrich, R.V. Krems, F. Masnou-Seeuws, Eur. Phys. J. D 31, 149 (2004), and references therein

    Article  ADS  Google Scholar 

  3. R.V. Krems, Int. Rev. Phys. Chem. 24, 99 (2005)

    Article  Google Scholar 

  4. C. Daussy, T. Marrel, A. Amy-Klein, C.T. Nguyen, C.J. Bordé, C. Chardonnet, Phys. Rev. Lett. 83, 1554 (1999)

    Article  ADS  Google Scholar 

  5. M.R. Tarbutt, H.L. Bethlem, J.J. Hudson, V.L. Ryabov, V.A. Ryzhov, B.E. Sauer, G. Meijer, E.A. Hinds, Phys. Rev. Lett. 92, 173002 (2004)

    Article  ADS  Google Scholar 

  6. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  7. C.M. Tesch, R. de Vivie-Riedle, Phys. Rev. Lett. 89, 157901 (2002)

    Article  ADS  Google Scholar 

  8. A. André, D. DeMille, J.M. Doyle, M.D. Lukin, S.E. Maxwell, P. Rabl, R.J. Schoelkopf, P. Zoller, Nature Phys. 9, 636 (2006)

    Article  ADS  Google Scholar 

  9. D. Kleppner, Phys. Today 57, 12 (2004), and references therein

    Article  Google Scholar 

  10. J.D. Weinstein, R. deCarvalho, T. Guillet, B. Friedrich, J.M. Doyle, Nature (London) 395, 148 (1998)

    Article  ADS  Google Scholar 

  11. H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999)

    Article  ADS  Google Scholar 

  12. R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nature Phys. 2, 465 (2006)

    Article  ADS  Google Scholar 

  13. S.A. Rangwala, T. Junglen, T. Rieger, P.W.H. Pinkse, G. Rempe, Phys. Rev. A 67, 043406 (2003)

    Article  ADS  Google Scholar 

  14. M.S. Elioff, J.J. Valentini, D.W. Chandler, Science 302, 1940 (2003)

    Article  ADS  Google Scholar 

  15. N.-N. Liu, H.-J. Loesch, Phys. Rev. Lett. 98, 103002 (2007)

    Article  ADS  Google Scholar 

  16. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  17. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  18. W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  19. M. Drewsen, A. Mortensen, R. Martinussen, P. Staanum, J.L. Sørensen, Phys. Rev. Lett. 93, 243201 (2004)

    Article  ADS  Google Scholar 

  20. P. Blythe, B. Roth, U. Fröhlich, H. Wenz, S. Schiller, Phys. Rev. Lett. 95, 183002 (2005)

    Article  ADS  Google Scholar 

  21. J.T. Bahns, W.C. Stwalley, P.L. Gould, J. Chem. Phys. 104, 9689 (1996)

    Article  ADS  Google Scholar 

  22. I.S. Vogelius, L.B. Madsen, M. Drewsen, Phys. Rev. A 70, 053412 (2004)

    Article  ADS  Google Scholar 

  23. D.J. Tannor, A. Bartana, J. Phys. Chem. 103, 10359 (1999)

    Google Scholar 

  24. P.W. Brumer, M. Shapiro, Principles of Quantum Control of Molecular Processes (Wiley VCH, New York, 2003)

    Google Scholar 

  25. P. Horak, G. Hechenblaikner, K.M. Gheri, H. Stecher, H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997)

    Article  ADS  Google Scholar 

  26. V. Vuletić, S. Chu, Phys. Rev. Lett. 84, 3787 (2000)

    Article  ADS  Google Scholar 

  27. B.L. Lev, A. Vukics, E.R. Hudson, B.C. Sawyer, P. Domokos, H. Ritsch, J. Ye, arXiv:0705.3639v1 (2007)

    Google Scholar 

  28. W. Lu, Y. Zhao, P.F. Barker, Phys. Rev. A 76, 013417 (2007)

    Article  ADS  Google Scholar 

  29. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H. Pinkse, G. Rempe, Nature (London) 428, 50 (2004)

    Article  ADS  Google Scholar 

  30. S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, G. Rempe, Nature Phys. 1, 122 (2005)

    Article  ADS  Google Scholar 

  31. H.W. Chan, A.T. Black, V. Vuletić, Phys. Rev. Lett. 90, 063003 (2003)

    Article  ADS  Google Scholar 

  32. P. Domokos, H. Ritsch, J. Opt. Soc. Am. B 20, 1098 (2003)

    Article  ADS  Google Scholar 

  33. S. Stenholm, Rev. Mod. Phys. 58, 699 (1986)

    Article  ADS  Google Scholar 

  34. S.Y.T. van de Meerakker, P.H.M. Smeets, N. Vanhaecke, R.T. Jongma, G. Meijer, Phys. Rev. Lett. 94, 023004 (2005)

    Article  ADS  Google Scholar 

  35. J.R. Bochinski, E.R. Hudson, H.J. Lewandowski, J. Ye, Phys. Rev. A 70, 043410 (2004)

    Article  ADS  Google Scholar 

  36. R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nature Phys. 2, 465 (2006)

    Article  ADS  Google Scholar 

  37. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure – IV. Constants of Diatomic Molecules (van Nostrand Reinhold, New York, 1977)

    Google Scholar 

  38. M.S. Fee, A.P. Mills Jr., S. Chu, E.D. Shaw, K. Danzmannm, R.J. Chichester, D.M. Zuckerman, Phys. Rev. Lett. 70, 1397 (1993)

    Article  ADS  Google Scholar 

  39. J.A. Barnes, T.E. Gough, M. Stoer, Rev. Sci. Instrum. 70, 3515 (1999)

    Article  ADS  Google Scholar 

  40. G. Placzek, E. Teller, Z. Phys. 81, 209 (1933)

    Article  MATH  ADS  Google Scholar 

  41. R. Gaufres, S. Sportouch, J. Mol. Spectrosc. 39, 527 (1971)

    Article  ADS  Google Scholar 

  42. MOLPRO, version 2006.1, a package of ab initio programs, H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, G. Rauhut, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, A.W. Lloyd, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, see http://www.molpro.net

  43. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  44. J. Olsen, P. Jørgensen, J. Chem. Phys. 82, 3235 (1985)

    Article  ADS  Google Scholar 

  45. P. Jørgensen, H.J.Aa. Jensen, J. Olsen, J. Chem. Phys. 89, 3654 (1988)

    Google Scholar 

  46. DALTON, a molecular electronic structure program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html

  47. W.L. Meerts, A. Dymanus, Chem. Phys. Lett. 23, 45 (1973)

    Article  ADS  Google Scholar 

  48. J.E. Rice, R.D. Amos, S.M. Colwell, N.C. Handy, J. Sanz, J. Chem. Phys. 93, 8828 (1990)

    Article  ADS  Google Scholar 

  49. D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993)

    Article  ADS  Google Scholar 

  50. W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972)

    Article  ADS  Google Scholar 

  51. B.W. Shore, The Theory of Coherent Atomic Excitation, vol. 2 (Wiley-Interscience, New York, 1990)

  52. K. Sundermann, R. de Vivie-Riedle, J. Chem. Phys. 110, 1896 (1999)

    Article  ADS  Google Scholar 

  53. H.L. Bethlem, G. Berden, F.M.H. Crompvoets, R.T. Jongma, A.J.A. van Roij, G. Meijer, Nature (London) 406, 491 (2000)

    Article  ADS  Google Scholar 

  54. T. Rieger, T. Junglen, S.A. Rangwala, P.W.H. Pinkse, G. Rempe, Phys. Rev. Lett. 95, 173002 (2005)

    Article  ADS  Google Scholar 

  55. D. DeMille, D.R. Glenn, J. Petricka, Eur. Phys. J. D 31, 375 (2004)

    Article  ADS  Google Scholar 

  56. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, MA, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.W.H. Pinkse.

Additional information

PACS

33.80.Ps; 32.80.Lg; 42.50.Pq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalewski, M., Morigi, G., Pinkse, P. et al. Cavity cooling of translational and ro-vibrational motion of molecules: ab initio-based simulations for OH and NO. Appl. Phys. B 89, 459–467 (2007). https://doi.org/10.1007/s00340-007-2860-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2860-y

Keywords

Navigation