Skip to main content
Log in

Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Etching of amorphous Al2O3 and polycrystalline Y2O3 films has been investigated using an inductively coupled reactive ion etch system. The etch behaviour has been studied by applying various common process gases and combinations of these gases, including CF4/O2, BCl3, BCl3/HBr, Cl2, Cl2/Ar and Ar. The observed etch rates of Al2O3 films were much higher than Y2O3 for all process gases except for Ar, indicating a much stronger chemical etching component for the Al2O3 layers. Based on analysis of the film etch rates and an investigation of the selectivity and patterning feasibility of possible mask materials, optimized optical channel-waveguide structures were fabricated in both materials. In Al2O3, channel waveguides were fabricated with BCl3/HBr plasma and using a standard resist mask, while in Y2O3, channel waveguides were fabricated with Ar and using either a resist or a sputter deposited Al2O3 mask layer. The etched structures in both materials exhibit straight sidewalls with minimal roughness and sufficient etch depths (up to 530 nm for Al2O3 and 250 nm for Y2O3) for defining waveguides with strong optical confinement. Using the developed etch processes, low additional optical propagation losses (on the order of 0.1 dB/cm) were demonstrated in single-mode ridge waveguides in both Al2O3 and Y2O3 layers at 1550 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Polman, J. Appl. Phys. 82, 1 (1997)

    Article  ADS  Google Scholar 

  2. G.N. van den Hoven, E. Snoeks, A. Polman, J.W.M. van Uffelen, Y.S. Oei, M.K. Smit, Appl. Phys. Lett. 62, 3065 (1993)

    Article  ADS  Google Scholar 

  3. T.H. Hoekstra, P.V. Lambeck, H. Albers, T.J.A. Popma, Electron. Lett. 29, 581 (1993)

    Article  Google Scholar 

  4. S. Musa, H.J. van Weerden, T.H. Yau, P.V. Lambeck, IEEE J. Quantum Electron. QE-36, 1089 (2000)

    Article  ADS  Google Scholar 

  5. A. Suarez-Garcia, R. Serna, M. Jimenez de Castro, C.N. Afonso, I. Vickridge, Appl. Phys. Lett. 84, 2151 (2004)

    Article  ADS  Google Scholar 

  6. C.E. Chryssou, A.J. Kenyon, T.M. Smeeton, C.J. Humphreys, D.E. Hole, Appl. Phys. Lett. 85, 5200 (2004)

    Article  ADS  Google Scholar 

  7. O. Pons-Y-Moll, J. Perdiere, E. Million, R.M. Defourneau, D. Defourneau, B. Vincent, A. Essahiaoui, A. Boudrioua, J. Appl. Phys. 92, 4885 (2002)

    Article  ADS  Google Scholar 

  8. S. Bär, G. Huber, J. Gonzalo, A. Perea, M. Munz, Appl. Phys. A 80, 209 (2005)

    Article  ADS  Google Scholar 

  9. A.O.G. Dikovska, P.A. Atanasov, M. Jiménez de Castro, A. Perea, J. Gonzalo, C.N. Afonso, J. Garcia López, Thin Solid Films 500, 336 (2006)

    Article  ADS  Google Scholar 

  10. M.B. Korzenski, P. Lecoeur, B. Mercey, P. Carny, J.L. Doualan, Appl. Phys. Lett. 78, 1210 (2001)

    Article  ADS  Google Scholar 

  11. K. Wörhoff, J.D.B. Bradley, F. Ay, M. Pollnau, in Conference on Lasers and Electro-Optics, Technical Digest 2007 (Optical Society of America, Washington, DC, 2007), paper CMW5

  12. G.N. van den Hoven, R.J.I.M. Koper, A. Polman, C. van Dam, J.W.M. van Uffelen, M.K. Smit, Appl. Phys. Lett. 68, 1886 (1996)

    Article  ADS  Google Scholar 

  13. K. Solehmainen, M. Kapulainen, P. Heimala, K. Polamo, IEEE Photon. Technol. Lett. 16, 194 (2004)

    Article  Google Scholar 

  14. T.H. Hoekstra, Erbium-Doped Y2O3 Integrated Optical Amplifiers (University of Twente, Enschede, 1994)

  15. B.J.H. Stadler, M. Oliver, J. Appl. Phys. 84, 93 (1998)

    Article  ADS  Google Scholar 

  16. W.G.M. Van den Hoek, Mater. Res. Soc. Symp. Proc. 68, 71 (1986)

    Google Scholar 

  17. Y.H. Lee, Z.H. Zhou, D.A. Danner, P.M. Fryer, J.M. Harper, J. Appl. Phys. 68, 5329 (1990)

    Article  ADS  Google Scholar 

  18. J.W. Kim, Y.C. Kim, W.J. Lee, J. Appl. Phys. 78, 2045 (1995)

    Article  ADS  Google Scholar 

  19. J.W. Lee, B. Pathangey, M.R. Davidson, P.H. Holloway, E.S. Lambers, B. Davydov, T.J. Anderson, S.J. Pearton, J. Vac. Sci. Technol. A 16, 2177 (1998)

    Article  ADS  Google Scholar 

  20. D.P. Kim, J.W. Yeo, C.I. Kim, Thin Solid Films 459, 122 (2004)

    Article  ADS  Google Scholar 

  21. S. Tegen, P. Moll, J. Electrochem. Soc. 152, G271 (2005)

    Article  Google Scholar 

  22. Y.C. Kim, C.I. Kim, J. Vac. Sci. Technol. A 19, 2676 (2001)

    Article  ADS  Google Scholar 

  23. S.I. Shim, Y.S. Kwon, S.I. Kim, Y.T. Kim, J.H. Park, Solid-State Electron. 49, 497 (2005)

  24. E. van der Drift, B.A.C. Rousseeuw, J. Romijn, E.C.M. Pennings, F.H. Groen, Microelectron. Eng. 9, 499 (1989)

    Article  Google Scholar 

  25. D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 82nd edn. (CRC, Boca Raton, FL, 2001)

  26. B.S. Bokstein, M.I. Mendelev, D.J. Srolovitz, Thermodynamics and Kinetics in Materials Science: A Short Course (Oxford University Press, Oxford, 2005)

    Google Scholar 

  27. C.H. Jeong, D.W. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung, G.Y. Yeom, Surf. Coat. Technol. 171, 280 (2003)

    Article  Google Scholar 

  28. D.W. Kim, C.H. Jeong, K.N. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung, G.Y. Yeom, Thin Solid Films 435, 242 (2003)

    Article  ADS  Google Scholar 

  29. A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R.P. Salathe, R.W. Eason, C. Grivas, D.P. Shepherd, Appl. Phys. B 75, 15 (2002)

    Article  ADS  Google Scholar 

  30. C. Grivas, D.P. Shepherd, T.C. May-Smith, R.W. Eason, M. Pollnau, A. Crunteanu, M. Jelinek, IEEE J. Quantum Electron. QE-39, 501 (2003)

    Article  ADS  Google Scholar 

  31. C. Grivas, D.P. Shepherd, T.C. May-Smith, R.W. Eason, M. Pollnau, Opt. Express 13, 210 (2005)

    Article  ADS  Google Scholar 

  32. S. Bär, H. Scheife, K. Petermann, G. Huber, Top. Appl. Phys. 106, 401 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D.B. Bradley.

Additional information

PACS

42.70.-a; 42.82.-m; 42.82.Cr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, J., Ay, F., Wörhoff, K. et al. Fabrication of low-loss channel waveguides in Al2O3 and Y2O3 layers by inductively coupled plasma reactive ion etching. Appl. Phys. B 89, 311–318 (2007). https://doi.org/10.1007/s00340-007-2815-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2815-3

Keywords

Navigation