Skip to main content
Log in

Determination of binary diffusion coefficients of gases using photothermal deflection technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A photothermal deflection (PD) technique was applied to measure the binary diffusion coefficients of various gases (CO2–N2, CO2–O2, N2–He, O2–He, and CO2–He). With an in-house-made Loschmidt diffusion cell, a transverse PD system was employed to measure the time-resolved PD signal associated with the variation of the thermal diffusivity and the temperature coefficient of the refractive index of the gas mixture during the diffusion. The concentration evolution of the gas mixture was deduced from the PD amplitude and phase signals based on our diffraction PD model and was processed using two mass-diffusion models explored in this work for both short- and long-time diffusions to find the diffusion coefficient. An optical fiber oxygen sensor was also used to measure the concentration changes of the mixtures with oxygen. Experimental results demonstrated that the binary diffusion coefficients precisely measured with the PD technique were in agreement with the literature values. Moreover, the PD technique can measure the diffusion coefficients of various gas mixtures with both short- and long-time diffusions. In contrast, the oxygen sensor is only suitable for the long-time diffusion measurements of the gas mixtures with oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Almond, P. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996)

    Google Scholar 

  2. H. Vargas, L.M.C. Miranda, Rev. Sci. Instrum. 74, 794 (2003)

    Article  ADS  Google Scholar 

  3. J. Zhao, J. Shen, C. Hu, Opt. Lett. 27, 1755 (2002)

    ADS  Google Scholar 

  4. A.C. Boccara, D. Fournier, J. Bades, Appl. Phys. Lett. 36, 130 (1980)

    Article  ADS  Google Scholar 

  5. J.P. Roger, F. Lepoutre, D. Fournier, A.C. Boccara, Thin Solid Films 155, 165 (1987)

    Article  ADS  Google Scholar 

  6. M. Bertolotti, R. Li Voti, G. Liakhou, C. Sibilia, Rev. Sci. Instrum. 64, 1576 (1993)

    Article  ADS  Google Scholar 

  7. M. Bertolotti, S. Ligia, G. Liakhou, R. Li Voti, S. Paoloni, C. Sibilia, J. Appl. Phys. 85, 2881 (1999)

    Article  ADS  Google Scholar 

  8. J.F. Power, S.W. Fu, M.A. Schweitzer, Appl. Spectrosc. 54, 110 (2000)

    Article  ADS  Google Scholar 

  9. J. Zhou, J. Zhao, J. Shen, M.L. Baesso, J. Opt. Soc. Am. B 22, 2409 (2005)

    Article  ADS  Google Scholar 

  10. D. Fournier, A.C. Boccara, N.M. Amer, R. Gerlach, Appl. Phys. Lett. 37, 519 (1980)

    Article  ADS  Google Scholar 

  11. B.L. Zimering, A.C. Boccara, Appl. Opt. 36, 3188 (1997)

    Article  ADS  Google Scholar 

  12. S.N. Nickolaisen, S.E. Bialkowski, J. Chromatogr. 366, 127 (1986)

    Google Scholar 

  13. G. Liakhou, S. Paoloni, M. Bertolotti, J. Appl. Phys. 96, 4219 (2004)

    Article  ADS  Google Scholar 

  14. J.C. Loulergue, A.C. Tam, Appl. Phys. Lett. 46, 457 (1985)

    Article  ADS  Google Scholar 

  15. A. Salazar, A. Sánchez-Lavega, Rev. Sci. Instrum. 70, 98 (1999)

    Article  ADS  Google Scholar 

  16. J.H. Rohling, J. Shen, J. Zhou, C.E. Gu, A.N. Medina, M.L. Baesso, J. Appl. Phys. 99, 103107 (2006)

    Article  ADS  Google Scholar 

  17. J.A.P. Lima, M.G. da Silva, M.S. O Massunaga, E. Marín, L.C.M. Miranda, J. Appl. Phys. 91, 5581 (2002)

    Article  ADS  Google Scholar 

  18. N. Matsunaga, M. Hori, A. Nagashima, High Temp. 30, 77 (1998)

    Article  Google Scholar 

  19. F.R.W. McCourt, D. Weir, G.B. Clark, M. Thachuk, Mol. Phys. 103, 17 (2005)

    Article  ADS  Google Scholar 

  20. J. Baranski, E. Bich, E. Vogel, J.K. Lehmann, Int. J. Thermophys. 24, 1207 (2003)

    Article  Google Scholar 

  21. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)

    Google Scholar 

  22. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford University Press, New York, 1975)

  23. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  24. J.H. Rohling, J. Shen, J. Zhou, C.E. Gu, Opt. Lett. 31, 44 (2006)

    Article  ADS  Google Scholar 

  25. J. Shen, A. Mandelis, T. Ashe, Int. J. Thermophys. 19, 579 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Shen.

Additional information

PACS

78.20.Nv; 51.20.+d

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohling, J., Shen, J., Wang, C. et al. Determination of binary diffusion coefficients of gases using photothermal deflection technique. Appl. Phys. B 87, 355–362 (2007). https://doi.org/10.1007/s00340-007-2595-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2595-9

Keywords

Navigation