Skip to main content

Advertisement

Log in

Generation of strong coherent extreme ultraviolet radiation from the laser plasma produced on the surface of solid targets

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the generation of high harmonics (up to the 65th order, λ=12.24 nm) of a Ti:sapphire laser radiation after the propagation of femtosecond laser pulses through the low-excited plasma produced by a picosecond prepulse radiation on the surface of different targets. High-order harmonics generated from the surface plasma of most targets showed a plateau pattern. It is assumed that the harmonic generation in these conditions occurs due to the interaction of the femtosecond pulses with the ions. The conversion efficiencies at the plateau region were varied between 1×10-7 to 8×10-6, depending on the target. The main contribution to the limitation of harmonic generation efficiency and cutoff energy was attributed to the self-defocusing of main pulse. A considerable restriction of the 27th harmonic generation was observed at different focusing conditions in the case of chromium plasma. Our observation of the resonance-induced enhancement of a single harmonic (λ=61.2 nm) at a plateau region with the efficiency of 8×10-5 in the case of In plasma can offer some expectation that analogous processes can be realized in other plasma samples in the shorter wavelength range where the highest harmonics were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama Y, Midorikawa K, Matsunawa Y, Nagata Y, Obara M, Tashiro H, Toyoda K (1992) Phys. Rev. Lett. 69:2176

    Article  PubMed  ADS  Google Scholar 

  2. Kubodera S, Nagata Y, Akiyama Y, Midorikawa K, Obara M, Tashiro H, Toyoda K (1993) Phys. Rev. A 48:4576

    Article  PubMed  ADS  Google Scholar 

  3. Ganeev RA, Redkorechev VI, Usmanov T (1997) Opt. Commun. 135:251

    Article  ADS  Google Scholar 

  4. Meyer S, Eichmann H, Menzel T, Nolte S, Wellegehausen B, Chichkov BN, Momma C (1996) Phys. Rev. Lett. 76:3336

    Article  PubMed  ADS  Google Scholar 

  5. Bannerjee S, Valenzuela AR, Shah RS, Maskimchuk A, Umstadter D (2003) J. Opt. Soc. Am. B 20:182

    Article  ADS  Google Scholar 

  6. Theobald W, Wülker C, Schäfer FP, Chichkov BN (1995) Opt. Commun. 120:177

    Article  ADS  Google Scholar 

  7. Krushelnick K, Tighe W, Suckewer S (1997) J. Opt. Soc. Am. B 14:1687

    Article  ADS  Google Scholar 

  8. Wahlström C-G, Borgström S, Larsson J, Pettersson S-G (1995) Phys. Rev. A 51:585

    Article  PubMed  ADS  Google Scholar 

  9. Teubner U, Pretzler G, Schlegel T, Eidmann K, Förster E, Witte K (2003) Phys. Rev. A 67:013816

    Article  ADS  Google Scholar 

  10. Ganeev RA, Kulagin IA, Suzuki M, Baba M, Kuroda H (2005) Opt. Commun. 249:310

    Article  Google Scholar 

  11. Ganeev RA, Kanai T, Ishizawa A, Ozaki T, Kuroda H (2004) Appl. Opt. 43:1396

    Article  PubMed  ADS  Google Scholar 

  12. Ganeev RA, Baba M, Suzuki M, Kuroda H (2005) Phys. Lett. A 339:103

    Article  ADS  Google Scholar 

  13. Ganeev RA, Suzuki M, Baba M, Kuroda H (2005) Appl. Phys. Lett. 86:131116

    Article  ADS  Google Scholar 

  14. Schnürer M, Cheng Z, Sartania S, Hentschel M, Tempea G, Brabec T, Krausz F (1998) Appl. Phys. B 67:263

    Article  ADS  Google Scholar 

  15. Rundquist A, Durfee CG, Chang ZH, Herne C, Backus S, Murnane MM, Kapteyn HC (1998) Science 280:1412

    Article  PubMed  ADS  Google Scholar 

  16. Tamaki Y, Nagata Y, Obara M, Midorikawa K (1999) Phys. Rev. A 59:4041

    Article  ADS  Google Scholar 

  17. Schnürer M, Cheng Z, Hentschel M, Tempea G, Kalman P, Brabec T, Krausz F (1999) Phys. Rev. Lett. 83:722

    Article  ADS  Google Scholar 

  18. Ganeev RA, Suzuki M, Baba M, Kuroda H, Ozaki T (2005) Opt. Lett. 30:768

    Article  PubMed  ADS  Google Scholar 

  19. Anisimov SI, Imas YA, Romanov GS, Khodyko YV (1970) High Power Radiation Effect in Metals. Nauka, Moscow

    Google Scholar 

  20. Krause JL, Schafer KJ, Kulander KC (1992) Phys. Rev. Lett. 68:3535

    Article  PubMed  ADS  Google Scholar 

  21. Corkum PB (1993) Phys. Rev. Lett. 71:1994

    Article  PubMed  ADS  Google Scholar 

  22. L’Huillier A, Li XF, Lompre LA (1990) J. Opt. Soc. Am. B 7:527

    ADS  Google Scholar 

  23. Gibson EA, Paul A, Wagner N, Tobey R, Gaudiosi D, Backus S, Christov IP, Aquila A, Gullikson EM, Attwood DT, Murnane MM, Kapteyn HC (2003) Science 302:95

    Article  PubMed  ADS  Google Scholar 

  24. Kazamias S, Douillet D, Weihe F, Valentin C, Rousse A, Sebban S, Grillon G, Auge F, Hulin D, Balcou P (2003) Phys. Rev. Lett. 90:193901

    Article  PubMed  ADS  Google Scholar 

  25. Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G (2005) Appl. Phys. B 80:277

    Article  ADS  Google Scholar 

  26. Bellini M, Corsi C, Gambino MC (2001) Phys. Rev. A 64:023411

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Ganeev.

Additional information

PACS

42.65.Ky; 52.35.Mw; 52.38.-r

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganeev, R., Suzuki, M., Baba, M. et al. Generation of strong coherent extreme ultraviolet radiation from the laser plasma produced on the surface of solid targets. Appl. Phys. B 81, 1081–1089 (2005). https://doi.org/10.1007/s00340-005-1993-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1993-0

Keywords

Navigation