Skip to main content

Advertisement

Log in

Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Recent theoretical modelling and experimental results have shown that excess lattice phonon energy created dur ing the non-radiative energy transfer from the 4T2 pump manifold to the 2E storage level in Alexandrite when pumped with wavelengths shorter than ∼645 nm causes chaotic lasing output. Shorter pump wavelengths have also been associated with increased non-radiative energy decay and reduced laser efficiency. We report studies of fluorescence emission spectra of Alexandrite illuminated at a range of wavelengths from green to red, which demonstrate reduced fluorescence yield for shorter pump wavelengths at elevated crystal temperatures. Investigations of pulsed laser pumping of Alexandrite over the same spectral range demonstrated reduced pump threshold energy for longer pump wavelengths. High repetition rate pulsed pumping of Alexandrite at 532, 578 and 671 nm showed stable and efficient laser performance was only achieved for red pumping at 671 nm. These results support the theoretical model and demonstrate the potential for scalable, red laser pumped, all-solid-state Alexandrite lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Walling, O.G. Peterson, H.P. Jenssen, R.C. Morris, E.W. O’Dell: IEEE J. Quantum Electron. QE-16, 1562 (1980)

    Google Scholar 

  2. J.C. Walling, D.F. Heller, H. Samelson, D.J. Harter, J.A. Pete, R.C. Morris: IEEE J. Quantum Electron. QE-21, 1568 (1985)

  3. Light-Age Inc: http: //www.light-age.com

  4. W. Gadomski, B. Ratajska-Gadomska, R. Meucci: Chaos Soliton Fract 17, 387 (2003)

    Article  Google Scholar 

  5. S.T. Lai, M.L. Shand: J. Appl. Phys. 54, 5642 (1983)

    Article  Google Scholar 

  6. G.D. Gilliliand, A. Suchocki, K.W. Ver Steeg, R.C. Powell, D.F. Heller: Phys. Review B 38, 6227 (1988)

    Article  Google Scholar 

  7. W. Gadomski, B. Ratajska-Gadomska: J. Opt. Soc. America B 15, 2681 (1998)

    Google Scholar 

  8. R.C. Powell, L. Xi, X. Gang, G.J. Quarles, J.C. Walling: Phys. Review B 32, 2788 (1985)

    Article  Google Scholar 

  9. R. Scheps, J.F. Myers, T.R. Glesne, H.B. Serreze: Opt. Commun. 97, 363 (1993)

    Article  Google Scholar 

  10. M.L. Shand, J.C. Walling, H.P. Jenssen: IEEE J. Quantum Electron. QE-18, 167 (1982)

  11. M.L. Shand, H.P. Jenssen: IEEE J. Quantum Electron. QE-19, 480 (1983)

  12. M.L. Shand, J.C. Walling: IEEE J. Quantum Electron. QE-18, 1152 (1982)

  13. H. Ogilvy, M.J. Withford, P. Dekker, J.A. Piper: Optics Express, (2004)

  14. A. Agnesi, A. Guandalini, G. Reali: J. Opt. Soc. America B 19, 1078 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ogilvy.

Additional information

PACS

42.60.Lh; 42.60.Mi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogilvy, H., Withford, M., Mildren, R. et al. Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers. Appl. Phys. B 81, 637–644 (2005). https://doi.org/10.1007/s00340-005-1948-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1948-5

Keywords

Navigation