Skip to main content
Log in

Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area

Applied Physics B Aims and scope Submit manuscript

Abstract

Numerical simulations are used to study the effect of the frequency dependence of the effective mode area in photonic crystal fiber on supercontinuum generation. We quantify how the frequency dependence of the effective area influences the propagation characteristics through a modified optical shock term and identify the major consequence as a reduction in the extreme long-wavelength edge of the supercontinuum spectrum. Our results show that, for the parameter regimes used in many previous supercontinuum generation experiments using near-infrared femtosecond pump sources around 800 nm, this effect would be expected to be negligible. However, for pumps in the 1000–1500 nm range, the inclusion of this effect would be expected to be crucial for accurate comparison of simulations with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J.K. Ranka, R.S. Windeler, A.J. Stentz, Opt. Lett. 25, 25 (2000)

    Google Scholar 

  2. For a recent overview, see Appl. Phys. B 77(2–3), Special issue on Supercontinuum Generation (2003)

  3. A.V. Husakou, J. Herrmann, Phys. Rev. Lett. 87, 203901/1–4 (2001)

    Google Scholar 

  4. A.V. Husakou, J. Herrmann, J. Opt. Soc. Am. B 19, 2171 (2002)

    Google Scholar 

  5. B.R. Washburn, S.E. Ralph, P.A. Lacourt, J.M. Dudley, W.T. Rhodes, R.S. Windeler, S. Coen, Electron. Lett. 37, 1510 (2001)

    Article  Google Scholar 

  6. S. Coen, A.H.L. Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, P.St.J. Russell, J. Opt. Soc. Am. B 19, 753 (2002)

    Google Scholar 

  7. J.M. Dudley, L. Provino, N. Grossard, H. Maillotte, R.S. Windeler, B.J. Eggleton, S. Coen, J. Opt. Soc. Am. B 19, 765 (2002)

    Google Scholar 

  8. A.L. Gaeta, Opt. Lett. 27, 924 (2002)

    Google Scholar 

  9. B.R. Washburn, S.E. Ralph, R.S. Windeler, Opt. Express 10, 575 (2002)

    Google Scholar 

  10. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, M. Kaivola, Opt. Express 10, 1083 (2002)

    Google Scholar 

  11. K.L. Corwin, N.R. Newbury, J.M. Dudley, S. Coen, S.A. Diddams, K. Weber, R.S. Windeler, Phys. Rev. Lett. 90, 113904/1–4 (2003)

    Google Scholar 

  12. K.J. Blow, D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989)

    Article  Google Scholar 

  13. P.V. Mamyshev, S.V. Chernikov, Opt. Lett. 15, 1076 (1990)

    Google Scholar 

  14. P.L. François, J. Opt. Soc. Am. B 8, 276 (1991)

    Google Scholar 

  15. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001)

    Article  Google Scholar 

  16. R. Iliew, F. Lederer, Nonlinear Guided Waves and their Applications (NLGW), Paper NLtuD23 (2002)

  17. X. Fang, N. Karasawa, R. Morita, R.S. Windeler, M. Yamashita, IEEE Photon. Technol. Lett. 15, 233 (2003)

    Article  Google Scholar 

  18. G. Chang, T.B. Norris, H.G. Winful, Opt. Lett. 28, 546 (2003)

    PubMed  Google Scholar 

  19. M. Kolesik, E.M. Wright, J.V. Moloney, Appl. Phys. B 79, 293 (2004)

    Article  Google Scholar 

  20. G.P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics Series, 3rd ed. (Academic Press, San Diego, 2001)

    Google Scholar 

  21. D. Milam, Appl. Opt. 37, 546 (1998)

    Google Scholar 

  22. BeamPROP 5.1 (RSoft. Design Group, Inc., NY 2003)

  23. J.H.V. Price, W. Belardi, T.M. Munro, A. Malinowski, A. Piper, D.J. Richardson, Opt. Express 10, 382 (2002)

    Google Scholar 

  24. W.H. Reeves, D.V. Skyrabin, F. Biancalana, J.C. Knight, P. St. J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Nature 424, 511 (2003)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Dudley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibler, B., Dudley, J.M. & Coen, S. Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area. Appl. Phys. B 81, 337–342 (2005). https://doi.org/10.1007/s00340-005-1844-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1844-z

PACS

Navigation