Skip to main content
Log in

Experimental determination of the thermo-optic coefficient (dn /dT ) and the effective stimulated emission cross-section (σ e ) of an a -axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength

  • Regular Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, we report the experimental determination of the thermo-optical coefficient (dn/dT) and the effective stimulated emission cross-section (σe) at 1064 nm for an a-axis cut 1.3-at.% doped Nd:GdVO4 crystal in a monolithic laser configuration. The pump-power-induced thermal lensing effect in the monolithic laser was used to determine these parameters. While measuring the dn/dT parameter, we also took into consideration the effect of pump-power-induced thermal expansion of the crystal. The dn/dT values obtained were 2.64-6 and 4.87×10-6 K-1, respectively, for directions parallel and perpendicular to the c-axis of the crystal. We show that the neglect of pump-power-induced thermal expansion of the crystal can overestimate the value of dn/dT by 30–50%. With the measured variation of the focal length of the thermal lens as a function of the absorbed pump power, we also computed the overlap integrals at the threshold pump power. These overlap integral values were used to estimate the product of the effective stimulated emission cross-section (σe) and the excited state lifetime (τ) of the Nd:GdVO4 crystal, which was found to be 1.476×10-22 cm2 s. With the reported values of τ for a 1.3-at.% doped Nd:GdVO4 crystal, we estimated the value of σe to be in the range 14.76×10-19 to 16.4×10-19 cm2. The value of the effective stimulated emission cross-section measured in this way was found to be around two times higher in magnitude than earlier reported values measured by spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Zagumennyi, V.G. Ostoumov, I.A. Shcherbakov, T. Jenson, J.P. Meyn, G. Huber: Sov. J. Quantum Electron. 22, 1071 (1992)

    Article  ADS  Google Scholar 

  2. T. Jenson, V.G. Ostoumov, J.P. Meyn, G. Huber, A.I. Zagumennyi, I.A. Shcerbakov: Appl. Phys. B 58, 373 (1994)

    Article  ADS  Google Scholar 

  3. K. Shimamura, S. Uda, V.V. Kochrikhin, T. Tanuichi, T. Pukuda: Jpn. J. Appl. Phys. 35, 1832 (1996)

    Article  ADS  Google Scholar 

  4. C.Q. Wang, Y.T. Chow, L. Reekie, W.A. Gambling, H.J. Zhang, L. Zhu, X.L. Meng: Appl. Phys. B 70, 769 (2000)

    Article  ADS  Google Scholar 

  5. P.A. Studenikin, A.I. Zagumennyi, Y.D. Zavartsev, P.A. Papov, I.A. Shcerbakov: Quantum Electron. 25, 1162 (1995)

    Article  ADS  Google Scholar 

  6. A.I. Zagumennyi, T.D. Zavartsev, P.A. Studenikin, I.A. Shcerbakov, F. Umyskov, P.A. Popov, V.B. Ufimtsev: Proc. SPIE 2698, 182 (1996)

    Article  ADS  Google Scholar 

  7. H.D. Jiang, H.J. Zhang, J.Y. Wang, H.R. Xia, X.B. Hu, B. Tenz, C.Q. Zhang: Opt. Commun. 198, 447 (2001)

    Article  ADS  Google Scholar 

  8. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, M. Jiang: J. Opt. Soc. Am. B 19, 18 (2002)

    Article  ADS  Google Scholar 

  9. Y.F. Chen, T.M. Huang, C.F. Kao, C.L. Wang, S.C. Wang: IEEE J. Quantum Electron. QE-33, 1424 (1997)

  10. Y.F. Chen, H. Kuo: Opt. Lett. 23, 846 (1998)

    Article  ADS  Google Scholar 

  11. W. Koechner: Solid -State Laser Engineering (Springer, Berlin Heidelberg 1992)

  12. M. Birnbaum, A.W. Tucker, C.L. Fincher: J. Appl. Phys. 52, 1212 (1981)

    Article  ADS  Google Scholar 

  13. P.K. Mukhopadhyay, J. George, S.K. Sharma, K. Ranganathan, T.P.S. Nathan: Opt. Laser Technol. 34, 357 (2002)

    Article  ADS  Google Scholar 

  14. N. Hodgson, H. Weber: Optical Resonators (Springer, Berlin Heidelberg 1997)

  15. A.E. Siegman, S.W. Townsend: IEEE J. Quantum Electron. QE-29, 1261 (1993)

  16. P.K. Mukhopadhyay, K. Ranganathan, J. George, S.K. Sharma, T.P.S. Nathan: Pramana J. Phys. 58, 657 (2002)

    Article  ADS  Google Scholar 

  17. M.E. Innocenzi, H.T. Yura, C.L. Fincher, R.A. Fields: Appl. Phys. Lett. 56, 1831 (1990)

    Article  ADS  Google Scholar 

  18. A.K. Cousins: IEEE J. Quantum Electron. QE-28, 1057 (1992)

  19. C. Pfistner, R. Weber, H.P. Weber, S. Merrazzi, R. Gruber: IEEE J. Quantum Electron. QE-30, 1605 (1994)

  20. Y. Liao, R.J.D. Miller, M.R. Armstrong: Opt. Lett. 24, 1343 (1999)

    Article  ADS  Google Scholar 

  21. A.M. Prokhorov (Ed.): Spravochnik po Lazeram, Vol. 1 (Handbook on Lasers) (Sovet-skoe Radio, Moscow 1978) p. 263

  22. L. Fornasiero, S. Kuck, T. Jensen, G. Huber, B.H.T. Chai: Appl. Phys. B 67, 549 (1998)

    Article  ADS  Google Scholar 

  23. Y.F. Chen, Y.P. Lan, S.C. Wang: IEEE J. Quantum Electron. QE-36, 615 (2000)

  24. V. Lupei: Opt. Mater. 19, 95 (2002)

    Article  ADS  Google Scholar 

  25. W.A. Clarkson: J. Phys. D: Appl. Phys. 34, 2381 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. Y.F. Chen: Opt. Lett. 24, 1032 (1999)

    Article  ADS  Google Scholar 

  27. P.K. Mukhopadhyay, J. George, K. Ranganathan, S.K. Sharma, T.P.S. Nathan: Opt. Laser Technol. 34, 253 (2002)

    Article  ADS  Google Scholar 

  28. A. Sennaroglu: Appl. Opt. 38, 3253 (1999)

    Article  ADS  Google Scholar 

  29. P. Laporta, M. Bussard: IEEE J. Quantum Electron. QE-27, 2319 (1991)

  30. H.J. Zhang, X.L. Meng, H.Z. Zhang, P. Wang, J. Dawes, C.Q. Wang, Y.T. Chow: Cryst. Res. Technol. 33, 801 (1998)

    Article  Google Scholar 

  31. CASIX: Crystal Guide (CASIX Inc., Fujian 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.K. Mukhopadhyay .

Additional information

PACS

42.60.Lh; 42.60.Da; 42.60.By; 42.55.Rz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay , P., Nautiyal , A., Gupta , P. et al. Experimental determination of the thermo-optic coefficient (dn /dT ) and the effective stimulated emission cross-section (σ e ) of an a -axis cut 1.-at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength. Appl. Phys. B 77, 81–87 (2003). https://doi.org/10.1007/s00340-003-1242-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1242-3

Keywords

Navigation