Skip to main content
Log in

Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Many late transition binary alloy nanoparticles (NPs) have been fabricated through a wide variety of techniques. Various steps are involved in the fabrication of such NPs. Here, we used a simple and green route to fabricate solid-solution Rh–Pd and Rh–Pt bimetallic alloy NPs through femtosecond laser irradiation in a solution without any chemicals like reducing agents. X-ray diffraction (XRD) peaks of NPs obtained in the solutions with different ratios of Rh–Pd and Rh–Pt ions monotonically varied from the position of pure Rh to those of Pd and to Pt which respectively indicated that these NPs were alloy. Composition of fabricated NPs was fully tuned over the entire range of Rh1−x –Pd x , and Rh1−x –Pt x with varying the mixing ratio of metal ions in the solution. Studies of Rh–Pd and Rh–Pt solid-solution system suggest that the alloy formation occurs through the nucleation of Rh and then followed by the diffusion of Rh, Pd and Rh, Pt to form a homogeneous alloy. The variety of average size of the alloy NPs for different compositions could be attributed to different reduction rate and surface energies of metal ions. Our result implies that femtosecond laser irradiation in aqueous solution is one of the potential methodologies to form multimetallic solid-solution alloy NPs with fully tunable composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Roduner, Chem. Soc. Rev. 35, 583 (2006)

    Article  Google Scholar 

  2. S. Link, M.A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003)

    Article  ADS  Google Scholar 

  3. M.A. Newton, B. Jyoti, A.J. Dent, S. Diaz-Moreno, S.G. Fiddy, J. Evans, Chem. Phys. Chem. 5, 1056 (2004)

    Article  Google Scholar 

  4. A. Harriman, J. Chem. Soc. Chem. Commun. (1990)

  5. T. Yonezawa, N. Toshima, J. Mol. Catal. 83, 167 (1993)

    Article  Google Scholar 

  6. N. Toshima, K. Hirakawa, Polym. J. 31, 1127 (1999)

    Article  Google Scholar 

  7. A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert, G. Schmid, H. West, J. Phys. Chem. 99, 6096 (1995)

    Article  Google Scholar 

  8. K. Hirakawa, N. Toshima, Chem. Lett. 32, 78 (2003)

    Article  Google Scholar 

  9. J.R. Renzas, Phys. Chem. Phys. 13, 2556 (2011)

    Article  Google Scholar 

  10. K. Siepen, H. Bönnemann, W. Brijoux, J. Rothe, J. Hormes, Appl. Organomet. Chem. 14, 549 (2000)

    Article  Google Scholar 

  11. C.E. Lyman, R.E. Lakis, H.G. Stenger, Ultramicroscopy 58, 25 (1995)

    Article  Google Scholar 

  12. J.Y. Park, Y. Zhang, M. Grass, T. Zhang, G.A. Somoraji, Nano Lett. 8, 673 (2008)

    Article  ADS  Google Scholar 

  13. N. Savastenko, H.R. Volpp, O. Gerlach, W. Strehlau, J. Nanopart. Res. 10, 277 (2008)

    Article  Google Scholar 

  14. Y. Wang, J. Zhang, X. Wang, J. Ren, B. Zuo, Y. Tang, Top. Catal. 35, 35 (2005)

    Article  Google Scholar 

  15. M. Harada, K. Asakura, N. Toshima, J. Phys. Chem. 98, 2653 (1994)

    Article  Google Scholar 

  16. T. Hashimoto, K. Saijo, M. Harada, N. Toshima, J. Chem. Phys. 109, 5627 (1998)

    Article  ADS  Google Scholar 

  17. M. Harada, H. Einaga, J. Colloid Interface Sci. 308, 568 (2007)

    Article  Google Scholar 

  18. E. Cimini, R. Prins, J. Phys. Chem. B 101, 5277 (1997)

    Article  Google Scholar 

  19. E.R. Essinger–Hileman, D. DeCicco, J.F. Bondi, R.E. Schaak, J. Mater. Chem. 21, 11599 (2011)

    Article  Google Scholar 

  20. Y. Herbani, T. Nakamura, S. Sato, J. Nanomater. 2010, 154210 (2010)

    Article  Google Scholar 

  21. J.L.H. Chau, C.Y. Chen, M.C. Yang, K.L. lin, S. Sato, T. Nakamura, C.C. Yang, C.W. Cheng, Mater. Lett. 65, 804 (2011)

    Article  Google Scholar 

  22. T. Nakamura, Y. Herbani, S. Sato, J. Nanopart. Res. 14, 785 (2012)

    Article  Google Scholar 

  23. R.J. Bonilla, B.R. James, P.G. Jessop, Chem. Commun. 941 (2000)

  24. S. Pommeret, F. Gobert, M. Mostafavi, I. Lampre, J.C. Mialocq, J. Phys. Chem. A 105, 11400 (2001)

    Article  Google Scholar 

  25. S.L. Chin, S. Legacé, Appl. Opt. 35, 907 (1996)

    Article  ADS  Google Scholar 

  26. J.-P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, J. Phys. Chem. B 108, 16864 (2004)

    Article  Google Scholar 

  27. A.J. Dent, J. Evans, S.G. Fiddy, B. Jyoti, M.A. Newton, M. Tromp, Faraday Discuss. 138, 287 (2008)

    Article  ADS  Google Scholar 

  28. A. Cao, G. Veser, Nat. Mater. 9, 75 (2010)

    Article  ADS  Google Scholar 

  29. J.Y. Park, Y. Zhang, S.H. Joo, Y. Jung, G.A. Somoraji, Catal. Today 181, 133 (2012)

    Article  Google Scholar 

  30. K. Yuge, Mater. Trans. 52, 1399 (2011)

    Article  Google Scholar 

  31. K. Yuge, Phys. Rev. B 84, 085451 (2011)

    Article  ADS  Google Scholar 

  32. H.H. Huang, X.P. Ni, G.L. Loy, C.H. Chew, K.L. Tan, F.C. Loh, J.F. Deng, G.Q. XU, Langmuir 12, 909 (1996)

    Article  Google Scholar 

  33. A. Henglein, Chem. Mater. 10, 444 (1998)

    Article  Google Scholar 

  34. T. Kempa, R.A. Farrer, M. Giersig, J.T. Fourkas, Plasmonics 1, 45 (2006)

    Article  Google Scholar 

  35. D. Wynblatt, R.C. Ku, Appl. Surf. Sci. 65, 511 (1987)

    Google Scholar 

  36. W.M.H. Sachtler, R.A. van Santen, Appl. Surf. Sci. 3, 121 (1979)

    Article  Google Scholar 

  37. N. Toshima, T. Yonezawa, M. Harada, K. Asakura, Y. Iwasawa, Chem. Lett. 1769 (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Samiul Islam Sarker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarker, M.S.I., Nakamura, T., Herbani, Y. et al. Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution. Appl. Phys. A 110, 145–152 (2013). https://doi.org/10.1007/s00339-012-7467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7467-4

Keywords

Navigation