Skip to main content
Log in

SAR reduction in a muscle cube with metamaterial attachment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this paper is to evaluate the specific absorption rate (SAR) reduction in a muscle cube by using metamaterial. To evaluate the SAR in a realistic anatomically based model of the muscle cube, the finite-difference time-domain (FDTD) method has been utilized. The effective medium parameter is obtained to be negative at 900 MHz and 1800 MHz band by designing structural parameter of split ring resonators. The reduction is about 44.73% for 900 MHz, and about 48.27% for 1800 MHz was observed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. International Non-Ionizing Radiation Committee of the International Radiation Protection Association, Guidelines on limits on exposure to radio frequency electromagnetic fields in the frequency range from 100 KHz to 300 GHz. Health Physics 54(1), 115–123 (1988)

    Google Scholar 

  2. M.T. Islam, M.R.I. Faruque, N. Misran, Design analysis of ferrite sheet attachment for SAR reduction in human head. Prog. Electromagn. Res. 98, 191–205 (2009)

    Article  Google Scholar 

  3. S.I. Kwak, D.U. Sim, J.H. Kwon, H.D. Choi, Experimental tests of SAR reduction on mobile using EBG structures. Electron. Lett. 44(9), 568–570 (2008)

    Article  Google Scholar 

  4. J.N. Hawang, F.-C. Chen, Reduction of the peak SAR in the human head with metamaterials. IEEE Trans. Antennas Propag. 54(12), 3763–3770 (2006)

    Article  ADS  Google Scholar 

  5. J. Wang, O. Fujiwara, FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans. Microw. Theory Tech. 47(8), 1528–1534 (1999)

    Article  ADS  Google Scholar 

  6. M.M. Sigalalas, C.T. Chan, K.M. Ho, Soukoulis, Metallic photonic band gap materials. Phys. Rev. B 52(16), 11744–11760 (2001)

    Article  ADS  Google Scholar 

  7. D.R. Smith, N. Kroll, Negative refractive index in left handed materials. Phys. Rev. Lett. 85-14, 2933–2936 (2000)

    Article  ADS  Google Scholar 

  8. M.B. Manapati, R.S. Kshetrimayum, SAR reduction in human head from mobile phone radiation using single negative metamaterials. J. Electromagn. Waves Appl. 23, 1385–1395 (2009)

    Article  Google Scholar 

  9. B.B. Beard, W. Kainz, T. Onishi, T. Iyama, S. Watanabe, O. Fujiwara, J. Wang, G. Bit-Babik, A. Faraone, J. Wiart, A. Christ, N. Kuster, A. Lee, H. Kroeze, M. Siegbahn, J. Keshvari, H. Abrishamkar, W. Simon, D. Manteuffel, N. Nikoloski, Comparisons of computed mobile phone induced SAR in the SAM phantom to that anatomically corrects model of the human head. IEEE Trans. Electromagn. Compat. 48(2), 397–407 (2006)

    Article  Google Scholar 

  10. J.B. Pendry, J.A. Holen, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  11. N. Engheta, R.W. Ziolkowski, A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005)

    Article  ADS  Google Scholar 

  12. D. Correia, J.M. Jin, 3-D-FDTD-PML analysis of left-handed metamaterials. Microw. Opt. Technol. Lett. 40(3), 201–205 (2004)

    Article  Google Scholar 

  13. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag. 51(7), 1516–1529 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Erentok, P.L. Luljak, R.W. Ziolkowski, Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans. Antennas Propag. 53, 160–172 (2005)

    Article  ADS  Google Scholar 

  15. D. Sievenpiper, High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47, 2059–2074 (1999)

    Article  ADS  Google Scholar 

  16. M.T. Islam, M.R.I. Faruque, N. Misran, Reduction of specific absorption rate (SAR) in the human head with ferrite material and metamaterial. Prog. Electromagn. Res. 9, 47–58 (2009)

    Article  Google Scholar 

  17. M.R.I. Faruque, M.T. Islam, N. Misran, Evaluation of specific absorption rate (SAR) reduction for PIFA antenna using metamaterials. Freq. J. 64(7/8), 144–149 (2010)

    Article  Google Scholar 

  18. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  19. M. Bayindir, K. Aydin, E. Ozbay, Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81(1), 120–122 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. I. Faruque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.T., Faruque, M.R.I. & Misran, N. SAR reduction in a muscle cube with metamaterial attachment. Appl. Phys. A 103, 367–372 (2011). https://doi.org/10.1007/s00339-011-6342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6342-z

Keywords

Navigation