Skip to main content
Log in

Laser forward transfer based on a spatial light modulator

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the first demonstration of laser forward transfer using a real-time reconfigurable mask based on a spatial light modulator. The ability to dynamically change the projected beam shape and size of a coherent light source, in this case a 355-nm pulsed UV laser, represents a significant technological advancement in laser direct-write processing. The application of laser transfer techniques with adaptive control of the laser beam pattern is unique and represents a paradigm shift in non-lithographic processing. This work describes how the size and shape of an incident laser beam can be dynamically controlled in real time with the use of a digital micromirror device (DMD), resulting in laser-printed functional nanomaterials with geometries identical to those of the projected beam. For applications requiring additive non-lithographic techniques, this novel combination, which relies on the laser forward transfer of variable, structured voxels, represents a dramatic improvement in the capabilities and throughput of laser direct-write processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Piqué, D.B. Chrisey, Direct-write Technologies for Rapid Prototyping Applications: Sensors, Electronics and Integrated Power Sources (Academic Press, San Diego, 2002)

    Google Scholar 

  2. K.K.B. Hon, L. Li, I.M. Hutchings, CIRP Ann. Manuf. Technol. 57(2), 601 (2008)

    Article  Google Scholar 

  3. C. Sun, N. Fang, D.M. Wu, X. Zhang, Sens. Actuators, A, Phys. 121(1), 113 (2005)

    Article  Google Scholar 

  4. D. Dudley, W. Duncan, J. Slaughter, Proc. SPIE 4985, 14 (2003)

    Article  Google Scholar 

  5. Y. Lu, S. Chen, Appl. Phys. Lett. 92(4), 041109 (2008)

    Article  ADS  Google Scholar 

  6. M.V. Kessels, C. Nassour, P. Grosso, K. Heggarty, Opt. Commun. 283, 3089 (2010)

    Article  ADS  Google Scholar 

  7. K.-R. Kim, J. Yi, S.-H. Cho, N.-H. Kang, M.-W. Cho, B.-S. Shin, B. Choi, Appl. Surf. Sci. 255(18), 7835 (2009)

    Article  ADS  Google Scholar 

  8. A. Piqué, R.C.Y. Auyeung, H. Kim, K.M. Metkus, S.A. Mathews, J. Laser Micro/Nanoeng. 3, 163 (2008)

    Article  Google Scholar 

  9. R.C.Y. Auyeung, H. Kim, A.J. Birnbaum, M. Zalalutdinov, S.A. Mathews, A. Piqué, Appl. Phys. A 97, 513 (2009)

    Article  ADS  Google Scholar 

  10. C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23 (2007)

    Article  Google Scholar 

  11. J. Wang, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, Adv. Mater. (2010). doi:10.1002/adma201001729

  12. S.K. Nayar, V. Branzoi, T.E. Boult, in Proc. 2004 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’04), 2004, vol. 1, p. 436

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Piqué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auyeung, R.C.Y., Kim, H., Charipar, N.A. et al. Laser forward transfer based on a spatial light modulator. Appl. Phys. A 102, 21–26 (2011). https://doi.org/10.1007/s00339-010-6054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6054-9

Keywords

Navigation