Skip to main content
Log in

Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We introduce a modulation mechanism for negative index materials (NIM) in the GHz frequency range by means of photoconductive coupling. This leads the way to a monolithically integrated modulable NIM achieved by conventional microfabrication techniques. The photosensitive material is deposited in the gap of the split ring resonator (SRR) structure and the response in terms of S-parameters is simulated using a high frequency structure simulator (HFSSTM) program. Only a single SRR particle is simulated to demonstrate total suppression of resonance amplitude and without any loss of generality the concept is applicable to a NIM comprising of both negative permeability and negative permittivity. This simple modulation of refractive indices can lead to novel optical device developments with the potential to dramatically improve the performance of existing phased array antennas, optical beam-forming networks, antenna remoting and transportation of RF power through fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Technol. 47, 2057 (1999)

    Article  Google Scholar 

  5. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  6. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  7. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou, T. Koschny, C.M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005)

    Article  ADS  Google Scholar 

  8. H.O. Moser, B.D.F. Casse, O. Wilhelmi, B.T. Saw, Phys. Rev. Lett. 94, 063901 (2005)

    Article  ADS  Google Scholar 

  9. S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  10. V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  11. T.F. Gundogdu, I. Tsiapa, A. Kostopoulos, G. Konstantinidis, N. Katsarakis, R.S. Penciu, M. Kafesaki, E.N. Economou, T. Koschny, C.M. Soukoulis, Appl. Phys. Lett. 89, 084103 (2006)

    Article  ADS  Google Scholar 

  12. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  13. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  14. A. Alù, N. Engheta, IEEE Trans. Antennas Propag. 51, 2558 (2003)

    Article  ADS  Google Scholar 

  15. S.A. Ramakrishna, Rep. Prog. Phys. 68, 449 (2005)

    Article  ADS  Google Scholar 

  16. N. Engheta, R.W. Ziolkowski, IEEE Trans. Microw. Theory Technol. 53, 1535 (2005)

    Article  Google Scholar 

  17. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (Wiley, Hoboken, New Jersey, 2005)

    Google Scholar 

  18. H.S. Sommers, W.B. Teutsch, Proc. IEEE 52, 144 (1964)

    Article  Google Scholar 

  19. R.M. Arnold, F.J. Rosenbaum, IEEE Trans. Electron. Dev. 18, (1971)

  20. K.E. Mortenson, A.L. Armstrong, J.M. Borrego, J.F. White, Proc. IEEE 59, 1191 (1971)

    Google Scholar 

  21. D.H. Auston, Appl. Phys. Lett. 26, 3 (1975)

    Article  Google Scholar 

  22. A.M. Johnson, D.H. Auston, IEEE J. Quantum Electron. QE-11, 6 (1975)

    Google Scholar 

  23. A. Djemoun, A De Lustrac, F. Gadof, E. Akmansoy, In: Epfl. Latsis NIM Symp. (2005)

  24. S.W. Lee, Y. Kuga, A. Ishimaru, Prog. Electromagn. Res. PIER 51, 219 (2005)

    Article  Google Scholar 

  25. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, New J. Phys. 7, 168 (2005)

    Article  ADS  Google Scholar 

  26. W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Phys. Rev. Lett. 96, 107401 (2006)

    Article  ADS  Google Scholar 

  27. D.R. Smith, J. Gollub, J.J. Mock, W.J. Padilla, D. Schurig, J. Appl. Phys. 100, 024507 (2006)

    Article  ADS  Google Scholar 

  28. P. Gay Balmaz, O.J.F. Martin, J. Appl. Phys. 92, 2929 (2002)

    Article  ADS  Google Scholar 

  29. K. Aydin, K. Guven, N. Katsarakis, C.M. Soukoulis, E. Ozbay, Opt. Express 12, 94 (2004)

    Article  Google Scholar 

  30. X. Chen, B.I. Wu, J.A. Kong, T.M. Grzegorczyk, Phys. Rev. E 71, 046610 (2005)

    Article  ADS  Google Scholar 

  31. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  32. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)

    Article  ADS  Google Scholar 

  33. C.H. Lee, IEEE Trans. Microw. Theory Technol. 38, 596 (1990)

    Article  ADS  Google Scholar 

  34. M. Kafesaki, T. Koschny, R.S. Penciu, T.F. Gundogdu, E.N. Economou, C.M. Soukoulis, J. Opt. A Pure Appl. Opt. 7, 12 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saif Islam.

Additional information

PACS

42.60.Fc; 42.82.Cr; 81.05; 73.50.Pz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logeeswaran, V., Stameroff, A., Saif Islam, M. et al. Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation. Appl. Phys. A 87, 209–216 (2007). https://doi.org/10.1007/s00339-007-3897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3897-9

Keywords

Navigation