Skip to main content
Log in

Synthesis of gold nanowires with controlled crystallographic characteristics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The controlled fabrication of poly- and single-crystalline Au nanowires is reported. In polycarbonate templates, prepared by heavy-ion irradiation and subsequent etching, Au nanowires with diameters down to 25 nm are electrochemically synthesized. Four-circle X-ray diffraction and transmission electron microscopy measurements demonstrate that wires deposited potentiostatically at a voltage of -1.2 V at 65 °C are single-crystalline and oriented along the [110] direction. By reverse-pulse electrodeposition, wires oriented along the [100] direction are grown. The wires are cylindrical over their whole length. The morphology of the caps growing on top of poly- and single-crystalline wires is a strong indication of the particular crystalline structure of the nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F.R. Aussenegg, Europhys. Lett. 60, 663 (2000)

    Article  ADS  Google Scholar 

  2. J. Weeber, A. Dereux, C. Girarad, J.R. Krenn, J. Goudonnet, Phys. Rev. B 60, 9061 (1999)

    Article  ADS  Google Scholar 

  3. W.L. Barnes, A. Dereux, T.W. Ebbesed, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  4. R.M. Dickson, L.A. Lyon, J. Phys. Chem. B 104, 6095 (2000)

    Article  Google Scholar 

  5. M. El-Kouedi, C.D. Keating, in Nanobiotechnology, Concepts, Applications and Perspectives, ed. by C.M. Niemeyer, C.A. Mirkin (Wiley-VCH, 2004), pp. 429–443

  6. D.H. Reich, M. Tanase, A. Hultgren, L.A. Bauer, C.S. Chen, G.J. Meyer, J. Appl. Phys. 93, 7275 (2003)

    Article  ADS  Google Scholar 

  7. M. Tian, J. Wang, J. Kurtz, T.E. Mallouk, M.H.W. Chan, Nano Lett. 3, 919 (2003)

    Article  Google Scholar 

  8. M. Wirtz, C.R. Martin, Adv. Mater. 15, 455 (2003)

    Article  Google Scholar 

  9. X.Y. Zhang, L.D. Zhang, Y. Lei, L.X. Zhao, Y.Q. Mao, J. Mater. Chem. 11, 1732 (2001)

    Article  Google Scholar 

  10. W.B. Zhao, J.J. Zhu, H.Y. Chen, J. Cryst. Growth 258, 176 (2003)

    Article  ADS  Google Scholar 

  11. J. Gu, J. Shi, L. Xiong, H. Chen, L. Li, M. Ruan, Solid State Sci. 6, 747 (2004)

    Article  Google Scholar 

  12. P. Forrer, F. Schlottig, H. Siegenthaler, M. Textor, J. Appl. Electrochem. 30, 533 (2000)

    Article  Google Scholar 

  13. H. Araki, A. Fukuoka, Y. Sakamoto, S. Inagaki, N. Sugimoto, Y. Fukushima, M. Ichikawa, J. Mol. Catal. A Chem. 199, 95 (2003)

    Article  Google Scholar 

  14. C.R. Martin, Science 266, 1961 (1993)

    Article  ADS  Google Scholar 

  15. M.E. Toimil-Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter, Adv. Mater. 13, 62 (2001)

    Article  Google Scholar 

  16. G. Yi, W. Scharzacher, Appl. Phys. Lett. 74, 1746 (2000)

    Article  ADS  Google Scholar 

  17. M.E. Toimil-Molares, N. Chtanko, T.W. Cornelius, D. Dobrev, I. Enculescu, R.H. Blick, R. Neumann, Nanotechnology 15, S201 (2004)

    Article  ADS  Google Scholar 

  18. N. Chtanko, M.E. Toimil-Molares, T.W. Cornelius, D. Dobrev, R. Neumann, J. Phys. Chem. B 108, 9950 (2004)

    Article  Google Scholar 

  19. T.W. Cornelius, J. Brötz, N. Chtanko, D. Dobrev, G. Miehe, R. Neumann, M.E. Toimil-Molares, Nanotechnology 16, S246 (2005)

    Article  ADS  Google Scholar 

  20. Z. Zhu, Y. Maekawa, H. Koshikawa, Y. Suzuki, N. Yonezawa, M. Yoshida, Nucl. Instrum. Methods Phys. Res. B217, 449 (2004)

    Article  ADS  Google Scholar 

  21. E. Ferain, R. Legras, Nucl. Instrum. Methods Phys. Res. B 174, 116 (2001)

    Article  ADS  Google Scholar 

  22. C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Krueger, A. Bachtold, A. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101, 5497 (1997)

    Article  Google Scholar 

  23. P.Y. Apel, I.V. Blonskaya, O.L. Orelovich, S.N. Akimenko, B. Sartowska, S.N. Dmitriev, Colloid J. 66, 725 (2004)

    Article  Google Scholar 

  24. STOE Peak File C85-1330.pks

  25. J. Wang, M. Tian, T.E. Mallouk, M.H.W. Chan, J. Phys. Chem. B 108, 841 (2004)

    Article  Google Scholar 

  26. M.E. Toilmil-Molares, private communication

  27. M.E. Toimil-Molares, J. Brötz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter, Nucl. Instrum. Methods Phys. Res. B 185, 192 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karim.

Additional information

PACS

61.46.-w; 81.07.-b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, S., Toimil-Molares, M., Maurer, F. et al. Synthesis of gold nanowires with controlled crystallographic characteristics. Appl. Phys. A 84, 403–407 (2006). https://doi.org/10.1007/s00339-006-3645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-006-3645-6

Keywords

Navigation