Skip to main content
Log in

Mode-specific effects in resonant infrared ablation and deposition of polystyrene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Low molecular weight polystyrene (∼10 kDa) was ablated with a free-electron laser at 3.31 and 3.43 μm and deposited as thin films on Si(100) substrates. The vibrational bands at 3.31 and 3.43 μm correspond to phenyl-ring CH and backbone CH2 modes, respectively. Even though the absorption coefficients of these two modes are nearly the same, the ablation yield was approximately 50% higher for the ring-mode excitation compared with the backbone mode. Based on spectral line width, the ring-mode lifetime is approximately triple that of the backbone mode, leading to a higher spatiotemporal density of vibrational excitation that more effectively disrupts the relatively weak Van der Waals bonds between neighboring polymer chains and consequently to higher ablation efficiency of the ring mode. Molecular weight assays of the deposited films showed that relatively little bond scission occurred and that the average molecular weight of the films was similar to that of the starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bubb DM, Callahan JH, Horwitz JS, McGill RA, Houser EJ, Chrisey DB, Haglund RH, Papantonakis MR, Galicia M, Vertes A (2001) J. Vac. Sci. Technol. A 19:2698

    Article  Google Scholar 

  2. Bubb DM, Papantonakis MR, Toftmann B, Horwitz JS, McGill RA, Chrisey DB, Haglund Jr RF (2002) J. Appl. Phys. 91:9809

    Article  Google Scholar 

  3. Papantonakis MR, Haglund Jr RF (2004) Appl. Phys. A 79:1617

    Article  Google Scholar 

  4. Tsuboi Y, Goto M, Itaya A (2001) J. Appl. Phys. 89:7917

    Article  Google Scholar 

  5. See Blanchet GB (1996) J. Appl. Phys. 80:4082 and references therein

    Google Scholar 

  6. Srinivasan R, Braren B (1989) Chem. Rev. 89:1303

    Article  Google Scholar 

  7. Yingling YG, Garrison BJ (2002) Chem. Phys. Lett. 364:237

    Article  Google Scholar 

  8. Park HK, Haglund Jr RF (1997) Appl. Phys. A 64:431

    Article  Google Scholar 

  9. Edwards GS, Evertson D, Gabella W, Grant R, King TL, Kozub J, Mendenhall M, Shen J, Shores R, Storms S, Traeger RH (1996) IEEE J. Sel. Top. Quantum Electron. 2:810

    Article  Google Scholar 

  10. Bubb DM, Papantonakis MR, Horwitz JS, Haglund Jr RF, Toftmann B, McGill RA, Chrisey DB (2002) Chem. Phys. Lett. 352:135

    Article  Google Scholar 

  11. Bubb DM, O’Malley SM, Antonacci C, Belmont R, McGill RA, Crimi C (2005) Appl. Phys. A 81:119

    Article  Google Scholar 

  12. Dickinson JT (2001) Fracto-Emission, in Encyclopedia of Materials, Science and Technology, Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds). Elsevier, London, pp 3254–3256

  13. Dickinson JT, Langford SC, Nakahara S, Scudiero L, Hipps KW, Kim M-W, Park N-S (1996) Spatial and temporal probes of fracture, wear, and deformation, In Fractography of Glasses and Ceramics III, Varner JR, Fréchette VD, Quinn GD (eds) (Ceram Trans Volc 64). American Ceramic Society, Westerville, OH, pp 193–256

  14. Jones RAL (2002) Soft Condensed Matter. Oxford, New York

  15. Chuang TJ, Hussla I (1984) Phys. Rev. Lett. 52:2045

    Article  Google Scholar 

  16. Redlich B, van der Meer L, Zacharias H, Meijer G, von Helden G (2003) Nucl. Instrum. Methods Phys. Res. Sect. A 507:556

    Article  Google Scholar 

  17. Braun R, Hess P (1993) J. Chem. Phys. 99:8330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.M. Bubb.

Additional information

PACS

61.41.+e; 78.30.-j; 81.05.Lg; 81.15.Fg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubb, D., Johnson, S., Belmont, R. et al. Mode-specific effects in resonant infrared ablation and deposition of polystyrene. Appl. Phys. A 83, 147–151 (2006). https://doi.org/10.1007/s00339-005-3478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3478-8

Keywords

Navigation