Skip to main content
Log in

Spiral three-dimensional photonic crystals for telecommunications spectral range

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three-dimensional photonic crystals consisting of periodic arrays of spiral columns were fabricated in a commercially available photoresist (SU-8) by a direct laser writing technique. Tailoring the pre- and post-processing conditions for the photoresist has enabled the recording of extended, self-supporting periodic structures with sub-diffraction resolution. Pronounced photonic stop gaps were observed at wavelengths between 1.5 and 1.8 μm, close to the telecommunications region. These structures can be used as accurate and robust templates for subsequent infiltration by materials with higher refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yablonovitch E (1987) Phys. Rev. Lett. 58:2059

    Article  ADS  Google Scholar 

  2. John S (1987) Phys. Rev. Lett. 58:2486

    Article  ADS  Google Scholar 

  3. Lin SY, Fleming JG, Hetherington DL, Smith BK, Biswas R, Ho KM, Sigalas MM, Zubrzycki W, Kurtz SR, Bur J (1998) Nature 394:251

    Article  ADS  Google Scholar 

  4. Noda S (2000) Physica 279:142

    Article  Google Scholar 

  5. Kawata S, Sun H-B, Tanaka T, Takada K (2001) Nature 412:697

    Article  ADS  Google Scholar 

  6. Tanaka T, Sun H-B, Kawata S (2002) Appl. Phys. Lett. 80:312

    Article  ADS  Google Scholar 

  7. Blanco A, Chomski E, Grabtchak S, Ibisate M, John S, Leonard SW, Lopez C, Meseguer F, Miguez H, Mondia JP, Ozin GA, Toader O, van Driel HM (2000) Nature 405:437

    Article  ADS  Google Scholar 

  8. Serbin J, Ovsianikov A, Chichkov B (2004) Opt. Express 12:5221

    Article  ADS  Google Scholar 

  9. http://www3.interscience.wiley.com/cgi-bin/abstract/112101795/ABSTRACT

  10. Deubel M, Freymann GV, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Nat. Mater. 3:444

    Article  ADS  Google Scholar 

  11. Maldovan M, Thomas EL (2004) Nat. Mater. 3:593

    Article  ADS  Google Scholar 

  12. Toader O, John S (2001) Science 292:1133

    Article  ADS  Google Scholar 

  13. Toader O, John S (2002) Phys. Rev. E 66:016610

    Article  ADS  Google Scholar 

  14. Kennedy SR, Brett MJ, Toader O, John S (2002) Nano Lett. 2:59

    Article  ADS  Google Scholar 

  15. Kennedy SR, Brett MJ, Miguez H, Toader O, John S (2003) Photon. Nanostruct. 1:37

    Article  ADS  Google Scholar 

  16. Seet KK, Mizeikis V, Matsuo S, Juodkazis S, Misawa H (2005) Adv. Mater. 17:541

    Article  Google Scholar 

  17. Chutinan A, Noda S (1998) Phys. Rev. B 57:4

    Article  Google Scholar 

  18. Mizeikis V, Seet KK, Juodkazis S, Misawa H (2004) Opt. Lett. 29:2061

    Article  ADS  Google Scholar 

  19. Marcinkevicius A, Mizeikis V, Juodkazis S, Matsuo S, Misawa H (2003) Appl. Phys. A 76:257

    Article  ADS  Google Scholar 

  20. Johnson SG, Joannopoulos JD (2001) Opt. Express 8:173

    Article  ADS  Google Scholar 

  21. http://www.microchem.com/resources/materials.htm

  22. Ashby MF, Gibson LJ, Wegst U, Olive R (1995) Proc. Roy. Soc. Lond. A 450:123

    Article  ADS  Google Scholar 

  23. Eckert CA, Knutson BL, Debendetti PG (1996) Nature 383:313

    Article  ADS  Google Scholar 

  24. Namatsu H (2001) J. Vac. Sci. Technol. B 19:2709

    Article  Google Scholar 

  25. Straub M, Ventura MJ, Gu M (2003) Phys. Rev. Lett. 91:1824

    Article  Google Scholar 

  26. Zhou G, Ventura MJ, Vanner MR, Gu M (2005) Appl. Phys. Lett. 86:011108

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Misawa.

Additional information

PACS

42.65.Re; 42.70.-a; 42.70.Qs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seet, K., Mizeikis, V., Juodkazis, S. et al. Spiral three-dimensional photonic crystals for telecommunications spectral range. Appl. Phys. A 82, 683–688 (2006). https://doi.org/10.1007/s00339-005-3459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3459-y

Keywords

Navigation