Skip to main content
Log in

Charge-storage effects in a metal-insulator-semi-conductor structure containing germanium nano-crystals formed by rapid thermal annealing of an electron-beam evaporated germanium layer

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Charge-storage effects in a metal-insulator-semi-conductor device containing germanium (Ge) nano-crystals were investigated. The Ge nano-crystals were formed by rapid thermal annealing (RTA) of an evaporated, ultra-thin Ge layer at 1000 °C in argon. Capacitance–voltage measurements shows that the amount of electrical charge which can be stored in the device varies with the duration of the RTA treatment. The charge shows a maximum value for 200 s RTA treatment, and then decreases with longer annealing time up to 400 s. Atomic force microscopy analysis indicates that there is a correlation between the density of Ge nano-crystals in the devices, and the amount of electrical charge stored. For an RTA treatment of 300 s, capacitance–time measurements show a time dependence, which indicates a dispersive carrier relaxation. The retention time is dependent on the applied bias, and a maximum retention time of ∼115 s was observed at -7 V. The value of the stored electrical charges in the device decreases with increasing ambient temperature. A possible charging/discharging mechanism for the device was discussed to explain the capacitance–time measurements and the temperature stored charge results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan: Appl. Phys. Lett. 68, 1377 (1996)

    Article  ADS  Google Scholar 

  2. Y. Shi, K. Saito, H. Ishikuro, T. Hiramoto: J. Appl. Phys. 84, 2358 (1998)

    Article  ADS  Google Scholar 

  3. S.-H. Choi, R.G. Elliman: Appl. Phys. Lett. 75, 968 (1999)

    Article  ADS  Google Scholar 

  4. E. Kapetanakis, P. Normand, D. Tsoukalas, K. Beltsios, J. Stoemenos, S. Zhang, J. van den Berg: Appl. Phys. Lett. 77, 3450 (2000)

    Article  ADS  Google Scholar 

  5. Y. Kim, K.H. Park, T.H. Chung, H.J. Bark, J.-Y. Yi, W.C. Choi, E.K. Kim, J.W. Lee, J.Y. Lee: Appl. Phys. Lett. 78, 934 (2001)

    Article  ADS  Google Scholar 

  6. M.L. Ostraat, J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan, H.A. Atwater: Appl. Phys. Lett. 79, 433 (2001)

    Article  ADS  Google Scholar 

  7. H. Kim, S. Han, K. Han, J. Lee, H. Shin: Jpn. J. Appl. Phys. 40, 447 (2000)

    Article  ADS  Google Scholar 

  8. A. Dutta, Y. Hayafune, S. Oda: Jpn. J. Appl. Phys. 39, L855 (2000)

  9. T. Kobayashi, T. Endoh, H. Fukuda, S. Nomura, A. Sakai, Y. Ueda: Appl. Phys. Lett. 71, 1195 (1997)

    Article  ADS  Google Scholar 

  10. Y. Inoue, M. Fujii, S. Hayashi, K. Yamamoto: Solid State Electron. 42, 1605 (1998)

    Article  ADS  Google Scholar 

  11. Y.-C. King, T.-J. King, C.M. Hu: IEEE Trans. Electron. Devices 48, 696 (2001)

    Article  ADS  Google Scholar 

  12. H. Fukuda, S. Sakuma, T. Yamada, S. Nomura, M. Nishino, T. Higuchi, S. Ohshima: J. Appl. Phys. 90, 3524 (2001)

    Article  ADS  Google Scholar 

  13. A. Kanjilal, J. Lundsgaard Hansen, P. Gaiduk, A. Nylandsted Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, D. Tsoukalas: Appl. Phys. Lett. 82, 1212 (2003)

    Article  ADS  Google Scholar 

  14. W.K. Choi, W.K. Chim, C.L. Heng, L.W. Teo, V. Ho, V. Ng, D.A. Antoniadis, E.A. Fitzgerald: Appl. Phys. Lett. 80, 2014 (2002)

    Article  ADS  Google Scholar 

  15. L.W. Teo, W.K. Choi, W.K. Chim, V. Ho, C.M. Moey, M.S. Tay, C.L. Heng, Y. Lei, D.A. Antoniadis, E.A. Fitzgerald: Appl. Phys. Lett. 81, 3639 (2002)

    Article  ADS  Google Scholar 

  16. Y. Maeda: Phys. Rev. B 51, 1658 (1995)

    Article  ADS  Google Scholar 

  17. W. Ostwald: Z. Phys. Chem. (Leipzig) 34, 495 (1890)

    Google Scholar 

  18. L. Tsybeskov, G.F. Grom, M. Jungo, L. Montes, P.M. Fauchet, J.P. McCaffrey, J.-M. Baribeau, G.I. Sproule, D.J. Lockwood: Mater. Sci. Eng. B 6970, 303 (2000)

  19. P. Rao, E.A. Schiff, L. Tsybeskov, P.M. Fauchet: In: Advances in Microcrystalline and Nanocrystalline Semiconductors-1996, Mat. Res. Soc. Symp. Proc. 454, 613 (1997)

  20. S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi: Appl. Phys. Lett. 69, 1232 (1996)

    Article  ADS  Google Scholar 

  21. Y.M. Niquet, G. Allan, C. Delerue, M. Lannoo: Appl. Phys. Lett. 77, 1182 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.L. Heng.

Additional information

PACS

81.07.Ta; 81.15.Jj; 73.63.Kv; 85.35.Be; 81.40.Ef

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heng, C., Tjiu, W. & Finstad, T. Charge-storage effects in a metal-insulator-semi-conductor structure containing germanium nano-crystals formed by rapid thermal annealing of an electron-beam evaporated germanium layer. Appl. Phys. A 78, 1181–1186 (2004). https://doi.org/10.1007/s00339-003-2482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2482-0

Keywords

Navigation