Skip to main content

Advertisement

Log in

Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanism of electrochemical hydrogen storage in a nanostructured carbon electrode using the electrodecomposition of KOH and H2SO4 aqueous solutions has been investigated by means of galvanostatic and voltammetry techniques. The role of charging the electrical double layer is carefully considered during the process of hydrogen insertion and deinsertion into carbon, i.e. electroreduction and electrooxidation, respectively. Once the electrode potential becomes lower than the equilibrium potential, hydrogen in the zero oxidation state is formed by the reduction of water in alkaline solution or the reduction of hydronium ions H3O+ in acidic medium. In the next step, hydrogen is physically adsorbed (Had) onto the carbon surface and diffuses into the bulk of the carbon material with an efficiency which depends on the type of electrolyte. A higher amount of hydrogen is stored using the KOH medium, and the galvanostatic oxidation shows a well-defined plateau around -0.5 V vs. Normal Hydrogen Electrode (NHE). Due to the high overvoltage value in KOH (η=0.55 V), the recombination steps of Had leading to molecular hydrogen evolution through the chemical (Tafel) or electrochemical (Heyrovsky) reactions are less favoured than in an H2SO4 medium (η=0.32 V). Hence, a meaningful sorption of hydrogen is observed only in the basic electrolyte which shows a reversible capacity of 350 mA h/g (i.e. 1.3 wt. %) with a good electrical efficiency. Such performance demonstrates that nanostructured activated carbons might be a promising alternative to metallic alloys for electrochemical hydrogen storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Latroche: J. Phys. Chem. Solids, in press (2003)

  2. W. Liu, H. Wu, Y. Lei, Q. Wang, J. Wu: J. Alloys Comp. 252, 234 (1997)

    Article  Google Scholar 

  3. T. Kuji, H. Nakano, T. Aizawa: J. Alloys Comp. 330336, 590 (2002)

    Google Scholar 

  4. C. Nützenadel, A. Züttel, D. Chartouni, L. Schlapbach: Electrochem. Solid State Lett. 2, 30 (1999)

    Article  Google Scholar 

  5. X. Qin, X.P. Gao, H. Liu, H.T. Yuan, D.Y. Yan, W.L. Gong, D.Y. Song: Electrochem Solid State Lett. 3, 532 (2000)

    Article  Google Scholar 

  6. N. Rajalakshmi, K.S. Dhathathreyan, A. Govindaraj, B.C. Satishkumar: Electrochim. Acta 45, 4511 (2000)

    Article  Google Scholar 

  7. A.K.M. Fazle Kibria, Y.H. Mo, K.S. Park, K.S. Nahm, M.Y. Yun: Int. J. Hydrogen Energy 26, 823 (2001)

    Article  Google Scholar 

  8. G. Gundiah, A. Govindaraj, N. Rajalakshmi, K.S. Dhathathreyan, C.N.R. Rao: J. Mat. Chem. 13, 209 (2003)

    Article  Google Scholar 

  9. K. Jurewicz, E. Frackowiak, F. Béguin: unpublished results

  10. A. Züttel, P. Sudan, P. Mauron, T. Kioyobayashi, C. Emmenegger, L. Schlapbach: Int. J. Hydrogen Energy 27, 203 (2002)

    Article  Google Scholar 

  11. G.G. Tibbetts, G.P. Meisner, C.H. Olk: Carbon 39, 2291 (2001)

    Article  Google Scholar 

  12. M. Hirscher, M. Becher: J. Nanosci. Nanotech. 3, 3 (2003)

    Article  Google Scholar 

  13. K. Jurewicz, E. Frackowiak, F. Béguin: Electrochem. Solid State Lett. 4, A27 (2001)

  14. K. Jurewicz, E. Frackowiak, F. Béguin: Fuel Process. Tech. 77, 407 (2002)

    Google Scholar 

  15. R. Ströbel, L. Jörissen, T. Schliermann, V. Trapp, W. Schültz, K. Bohmhammel, G. Wolf, J. Garche: J. Power Sources 84, 221 (1999)

    Article  Google Scholar 

  16. F. Béguin, F. Chevallier, C. Vix, S. Saadallah, J.N. Rouzaud, E. Frackowiak: J. Phys. Chem. Solids, in press (2003)

  17. D. Cazorla-Amorós, J. Alcañiz-Monge: A. Linares-Solano, Langmuir 12, 2820 (1996)

    Article  Google Scholar 

  18. D. Cazorla-Amorós, J. Alcañiz-Monge: M.A. De la Casa-Lillo, A. Linares-Solano: Langmuir 14, 4589 (1998)

    Google Scholar 

  19. D. Lozano-Castelló, D. Cazorla-Amorós: A. Linares-Solano, D.F. Quinn: J. Phys. Chem. B 106, 9372 (2002)

    Google Scholar 

  20. M. Grden, A. Piascik, Z. Koczorowski, A. Czerwinski: J. Electroanal. Chem. 532, 35 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Béguin.

Additional information

PACS

82.45.Yz; 81.05.Uw; 82.30.Rs; 82.45.Hk; 82.45.Fk; 81.05.Rm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurewicz, K., Frackowiak, E. & Béguin, F. Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A 78, 981–987 (2004). https://doi.org/10.1007/s00339-003-2418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2418-8

Keywords

Navigation