Skip to main content
Log in

Pulsed laser deposition: metal versus oxide ablation

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets to repetitive laser irradiation could be expected due to the different band structures of metals and oxides, the optical response is quite similar for 248-nm laser irradiation. Therefore, the difference in response is largely caused by differences in thermal properties. Metal targets show periodic structures of the order of micrometers after consecutive pulses of laser radiation, while the SrTiO3 and BaTiO3 targets show a flat surface after ablation for relatively low fluences (1.0 J cm-2). The observed TiO2 target ablation characteristics fall in between those of the ablated metals and perovskites, because ablation results in the presence of Ti-rich material, which shields the underlying stoichiometric target material from ablation. The final target morphology is dependent on fluence, number of pulses, and the movement of the target itself (rotating, scanning, or stationary). It can take between 15 and 75 pulses to reach a steady-state target morphology on a stationary target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A.F. Span, F.J.G. Roesthuis, D.H.A. Blank, H. Rogalla: Appl. Surf. Sci. 150, 171 (1999)

    Article  ADS  Google Scholar 

  2. B. Dam, J.H. Rector, J. Johansson, S. Kars, R. Griessen: Appl. Surf. Sci. 9698, 679 (1996)

    Google Scholar 

  3. I.W. Boyd: Laser Processing of Thin Films and Microstructures (Springer, Berlin 1987)

  4. P.R. Willmott, J.R. Huber: Rev. Mod. Phys. 72, 315 (2000)

    Article  ADS  Google Scholar 

  5. E.D. Palik: Handbook of Optical Constants of Solids (Academic, Orlando, FL 1985)

  6. E.D. Palik: Handbook of Optical Constants of Solids II (Academic, San Diego, CA 1991)

  7. M. von Allmen, A. Blatter: Laser-beam Interactions with Materials: Physical Principles and Applications (Springer, Berlin 1995)

  8. R. Wood: Laser Damage in Optical Materials (IOP, Bristol 1990)

  9. http://www.webelements.com/

  10. G. Grimvall: Thermophysical Properties of Materials (Elsevier, Amsterdam 1999)

  11. M.K. Karapet’yants, M.L. Karapet’yants: Thermodynamic Constants of Inorganic and Organic Compounds (Ann Arbor–Humphrey Science, London 1970)

  12. D.R. Lide: CRC Handbook of Chemistry and Physics, Vol. 81 (CRC, Boca Raton, FL 2000)

  13. F. Cardarelli, Materials Handbook (Springer, London 2000)

  14. Y. Hiroshima, T. Ishiguro, I. Urata, H. Makita, H. Ohta, M. Tohogi, Y. Ichinose: J. Appl. Phys. 79, 3572 (1996)

    Article  ADS  Google Scholar 

  15. E. Matthias, M. Reichling, J. Siegel, O.W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske: Appl. Phys. A 58, 129 (1994)

    Article  ADS  Google Scholar 

  16. B. Knacke: Thermochemical Properties of Inorganic Substances (Springer, Berlin 1973)

  17. S. Fähler, H.-U. Krebs: Appl. Surf. Sci. 9698, 61 (1996)

    Google Scholar 

  18. R. Jordan, J.G. Lunney: Appl. Surf. Sci. 127129, 968 (1998)

    Google Scholar 

  19. H.-A. Durand, J.-H. Brimaud, O. Hellman, H. Shibata, S. Sakuragi, Y. Makita, D. Gesbert, P. Meyrueis: Appl. Surf. Sci. 86, 122 (1995)

    Article  ADS  Google Scholar 

  20. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.E. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN 1992)

  21. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe: Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  22. L.M. Doeswijk, H.H.C. de Moor, D.H.A. Blank, H. Rogalla: Appl. Phys. A 69, S409 (1999)

  23. P. Milani, M. Manfredini: Appl. Phys. Lett. 68, 1769 (1996)

    Article  ADS  Google Scholar 

  24. D.H. Lowndes, J.D. Fowlkes, A.J. Pedraza: Appl. Surf. Sci. 154155, 647 (2000)

    Google Scholar 

  25. J.F. Young, J.E. Sipe, H.M. Driel: Phys. Rev. B 30, 2001 (1984)

    Article  ADS  Google Scholar 

  26. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel: Phys. Rev. B 27, 1141 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. György, I.N. Mihailescu, P. Serra, A. Pérez del Pino, J.L. Morenza: Surf. Coat. Technol. 154, 63 (2002)

    Article  Google Scholar 

  28. S.E. Clark, D.C. Emmony: Phys. Rev. B 40, 2031 (1989)

    Article  ADS  Google Scholar 

  29. E.A.F. Span: Oxygen-permeable Perovskite Thin-film Membranes by Pulsed Laser Deposition. Ph.D. thesis, University of Twente, The Netherlands (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.H.A. Blank.

Additional information

PACS

79.20.Ds; 52.38.Mf; 81.15.Fg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doeswijk, L., Rijnders, G. & Blank, D. Pulsed laser deposition: metal versus oxide ablation. Appl. Phys. A 78, 263–268 (2004). https://doi.org/10.1007/s00339-003-2332-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-003-2332-0

Keywords

Navigation