Skip to main content

Advertisement

Log in

Fluorescence studies of polycrystalline Al2O3 composite constituents: piezo-spectroscopic calibration and applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical fluorescence microscopy (OFM) was used to quantify the effect of applied stress or strain upon the position of the R fluorescence line of αAl2O3 composite constituents (fibers and matrices) prior to composite processing. Polycrystalline NextelTM Nextel 720 fibers were tested under tension and compression by means of a cantilever beam technique, whereas the polycrystalline matrix was tested in compression. The position of the R fluorescence line was correlated to applied strain and stress in order to provide the piezo-spectroscopic calibration curve and the corresponding coefficients for both sensors, which form the basis for interpretation of frequency shifts from full, all-alumina, composites. The piezo-spectroscopic coefficients of the polycrystalline matrix were found to be 2.57 cm-1 GPa-1 and 2.52 cm-1 GPa-1 for the R1 and R2 lines respectively, whereas the coefficients for the polycrystalline αAl2O3 Nextel 720 fibers were found to be 3.07 cm-1 GPa-1 and 2.91 cm-1 GPa-1 for the R1 and R2 lines, respectively. The effects of collection probe size, as well as penetration depth, are discussed. The established piezo-spectroscopic behavior is used inversely to quantify the residual stresses in the as-received fibers due to the presence of sizing, as well as in the thermally grown alumina layer of an industrial thermal barrier coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CRC Materials Science and Engineering Handbook, 3rd edn. (CRC Press LLC, Boca Raton, Florida 2001)

  2. S. Suguno, Y. Tanab: J. Phys. Soc. Jpn. 13, 880 (1958)

    Article  ADS  Google Scholar 

  3. S. Suguno, I. Tsujikaw: J. Phys. Soc. Jpn. 13, 899 (1958)

    Article  ADS  Google Scholar 

  4. D. McClure: J. Chem. Phys. 36, 3118 (1962)

    Google Scholar 

  5. L. Grabner: J. Appl. Phys. 49, 580 (1978)

    Article  ADS  Google Scholar 

  6. R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block: Science 176, 284 (1972)

    Article  ADS  Google Scholar 

  7. G.J. Piermarini, S. Block, J.D. Barnett, R.A. Forman: J. Appl. Phys. 46, 2774 (1975)

    Article  ADS  Google Scholar 

  8. Q. Ma, D.R. Clarke: Acta Metall. Mater. 41, 1811 (1993)

    Article  Google Scholar 

  9. J. He, D.R. Clarke: J. Am. Ceram. Soc. 78, 1347 (1995)

    Article  Google Scholar 

  10. Q. Ma, D.R. Clarke: J. Am. Ceram. Soc. 76, 1433 (1993)

    Article  Google Scholar 

  11. Q. Ma, D.R. Clarke: Acta Metall. Mater. 41, 1817 (1993)

    Article  Google Scholar 

  12. R.J. Young, X. Yang: Composites A 27, 737 (1996)

    Article  Google Scholar 

  13. J. He, D.R. Clarke: Proc. R. Soc. Lon. A 453, 1881 (1997)

    Article  ADS  Google Scholar 

  14. D.M. Lipkin, D.R. Clarke: Oxidation of Metals 45, 267 (1996)

    Article  Google Scholar 

  15. R. Christensen, D.M. Lipkin, D.R. Clarke, K. Murphy: Appl. Phys. Lett. 69, 3754 (1996)

    Article  ADS  Google Scholar 

  16. D.M. Lipkin, D.R. Clarke, M. Hollatz, M. Bobeth, W. Pompe: Corrosion Sci. 39, 231 (1997)

    Article  Google Scholar 

  17. V.K. Tolpygo, J. Dryden, D.R. Clarke: Acta Mater. 46, 927 (1998)

    Article  Google Scholar 

  18. G. Pezzotti, H. Okuda, N. Muraki, T. Nishida: J. European Ceramic Soc. 19, 601 (1999)

    Article  Google Scholar 

  19. G. Pezzotti, H. Suenobu, T. Nishida: J.Am. Ceramic Soc. 82, 1257 (1999)

    Article  Google Scholar 

  20. G. Pezzotti, O. Sbaizero, V. Sergo, N. Muraki, K. Maruyama, T. Nishida: J.Am. Ceramic Soc. 81, 187 (1998)

    Article  Google Scholar 

  21. J. He, D.R. Clarke: J. Am. Ceram. Soc. 80, 69 (1997)

    Article  Google Scholar 

  22. A. Paipetis, C. Vlattas, C. Galiotis: J. Raman Spect. 27, 519 (1996)

    Article  ADS  Google Scholar 

  23. L.S. Schadler, C. Galiotis: Int. Mat. Rev. 40, 116 (1995)

    Article  Google Scholar 

  24. C. Galiotis: Micromechanics of Reinforcement using Laser Raman Spectroscopy, Microstructural Characterisation of Fiber-Reinforced Composites (Woodhead Publishing Ltd., Cambridge, England 1998) pp. 224–253

  25. N. Melanitis: Ph.D. Thesis (Queen Mary and Westfield College, Department of Materials, University of London 1991)

  26. 3M Corporation: 3M Nextel Ceramic Fiber Technical Notebook (http://www.3m.com/ceramics, 1999)

  27. K.G. Dassios, M. Steen, C. Filiou: Mater. Sci. Eng. A (2003), in press

  28. C. Filiou, C. Galiotis: Composites Sci. Tech. 59, 2149 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Galiotis.

Additional information

PACS

87.64.Ni; 81.05.Je; 78.66.Sq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dassios, K., Galiotis, C. Fluorescence studies of polycrystalline Al2O3 composite constituents: piezo-spectroscopic calibration and applications. Appl. Phys. A 79, 647–659 (2004). https://doi.org/10.1007/s00339-002-2075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-002-2075-3

Keywords

Navigation