Skip to main content

Advertisement

Log in

Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adkins JF, Boyle EA, Curry WB, Lutringer L (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Allison N, Finch A, EIME (2010) δ11B, Sr, Mg and B in a modern Porites coral: The relationship between calcification site pH and skeleton chemistry. Geochim Cosmochim Acta 74:1790–1800

    Article  CAS  Google Scholar 

  • Allison N, Cohen I, Finch AA, Erez J, EMIF (2011) Controls on Sr/Ca and Mg/Ca in scleractinian corals: the effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry. Geochim Cosmochim Acta 75:6350–6360

    Article  CAS  Google Scholar 

  • Barnes DJ (1972) The structure and formation of growth-ridges in scleractinian coral skeletons. Proc R Soc Lond B 182:331–350

    Article  Google Scholar 

  • Bernhard JM, Blanks JK, Hintz CJ, Chandler GT (2004) Use of the fluorescent calcite marker calcein to label foraminiferal tests. J Foraminifer Res 34:96–101

    Article  Google Scholar 

  • Bielmyer GK, Grosell M, Bhagooli R, Baker AC, Langdon C, Gillette P, Capo TR (2012) Differential effects of copper on three species of scleractinian corals and their algal symbionts (Symbiodinium spp.). Aquat Toxicol 97:125–133

    Google Scholar 

  • Blamart D, Rollion-Bard C, Meibom A, Cuif J-P, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biomineralization and paleo-pH. Geochem Geophys Geosyst 8 Q12001 doi:10.1029/2007GC001686

  • Brahmi C, Meibom A, Smith DC, Stolarski J, Auzoux-Bordenave S, Nouet J, Doumenc D, Djediat C, Domart-Coulon I (2010) Skeleton growth, ultrastructure and composition of the azooxanthellate Balanophyllia regia. Coral Reefs 29:175–189

    Article  Google Scholar 

  • Budd AF, Stolarski J (2011) Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae. J Morphol 272:66–88

    Article  PubMed  Google Scholar 

  • Bumguardner BW, King TL (1996) Toxicity of oxytetracycline and calcein to juvenile striped bass. Trans Am Fish Soc 125:143–145

    Article  CAS  Google Scholar 

  • Chow TJ, Thompson TG (1955) Flame photometric determination of strontium in seawater. Anal Chem 27:18–21

    Article  CAS  Google Scholar 

  • Clausen CD, Roth AA (1975) Estimation of coral growth rates from laboratory 45Ca incorporation rates. Mar Biol 33:85–91

    Article  CAS  Google Scholar 

  • Clode PL, Marshall AT (2002) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34:187–189

    Article  PubMed  CAS  Google Scholar 

  • de Villiers S (1999) Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans. Earth Planet Sci Lett 171:623–634

    Article  Google Scholar 

  • Dissard D, Nehrke G, Reichart GJ, Nouet J, Bijma J (2009) Effect of the fluorescent indicator calcein on Mg and Sr incorporation into foraminiferal calcite. Geochem Geophys Geosyst 10 Q11001 doi:10.1029/2009GC002417

  • Dodge RE, Wyers SC, Frith HR, Knap AH, Smith SR, Cook CB, Sleeter TD (1984) Coral calcification rates by the buoyant weight technique: Effects of alizarin staining. J Exp Mar Biol Ecol 75:217–232

    Article  Google Scholar 

  • Downs CA, Richmond RH, Mendiola WC, Rougée L, Ostrander GK (2006) Cellular physiological effects of the MV Kyowa Violet fuel-oil spill on the hard coral Porites lobata. Environ Toxicol Chem 25:3171–3180

    Article  PubMed  CAS  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Woodley CM, Downs A, Winters G, Loya Y, Ostrander GK (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851

    Article  PubMed  CAS  Google Scholar 

  • Epstein S, Buscsbaum R, Lowenstam HA, Urey H (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326

    Article  CAS  Google Scholar 

  • Ferrier-Pagès C, Boisson F, Allemand D, Tambutté E (2002) Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 245:93–100

    Article  Google Scholar 

  • Finch A, Allison N (2002) Strontium in coral aragonite: 1. Characterization of Sr coordination by extended absorption X-ray fine structure. Geochim Cosmochim Acta 67:1189–1194

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 158:3445–3457

    Google Scholar 

  • Gaume B, Fouchereau-Peron M, Badou A, Hellouet M-N, Huchette S, Auzoux-Bordenave S (2011) Biomineralization markers during early shell formation in the European abalone Haliotis tuberculata. Mar Biol 158:341–352

    Article  CAS  Google Scholar 

  • Gilbert AL, Guzman HM (2001) Bioindication potential of carbonic anhydrase activity in anemones and corals. Mar Pollut Bull 42:742–744

    Article  PubMed  CAS  Google Scholar 

  • Gladfelter EH (1983) Skeletal development in Acropora cervicornis: II Diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Gladfelter EH (2007) Skeletal development in Acropora palmata (Lamarck 1816): a scanning electron microscope (SEM) comparison demonstrating similar mechanisms of skeletal extension in axial versus encrusting growth. Coral Reefs 26:883–892

    Article  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Guzman HM, Cortes J (1989) Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull Mar Sci 44:1186–1194

    Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  • Hoogenboom MO, Anthony KR, Connolly SR (2006) Energetic cost of photoinhinition in corals. Mar Ecol Prog Ser 313:1–12

    Article  CAS  Google Scholar 

  • Houlbrèque F, Meibom A, Cuif J-P, Stolarski J, Marrocchi Y, Ferrier-Pagès C, Domart-Coulon I, Dunbar RB (2009) Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys Res Lett 36 doi:10.1029/2008GL036782

  • Ip YK, Krishnanevi P (1991) Incorporation of strontium (90Sr2+) into the skeleton of the hermatypic coral Galaxea fascicularis. J Exp Zool 258:273–276

    Article  CAS  Google Scholar 

  • Isa Y, Ikehara N, Yamazato K (1980) Evidence for the occurrence of Ca2+-dependent adenosine triphosphatase in a hermatypic coral Acropora hebes (DANA). Sesoko Mar Sci Lab Tech Rep 7:19–25

    Google Scholar 

  • Janiszewska K, Stolarski J, Benzerara K, Meibom A, Mazur M, Kitahara M, Cairns S (2011) A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals. J Morphol 272:191–203

    Article  PubMed  Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O (1999) Effects of cyanide on coral photosynthesis: Implication for identifying the cause of coral bleaching and for assessing the environmental effects of cyanide fishing. Mar Ecol Prog Ser 177:83–91

    Article  CAS  Google Scholar 

  • Krief S, Hendy EJ, Finea M, Yamd R, Meibom A, Fosterc GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74:4988–5001

    Article  CAS  Google Scholar 

  • Le Tissier MD’AA (1988) The growth and formation of branch tips of Pocillopora damicornis. J Exp Mar Biol Ecol 124:115–131

    Google Scholar 

  • Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf P, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5 doi:10.1186/jbiol42

  • Marshall AT, Clode PL (2002) Effect on increased calcium concentration in seawater on calcification and photosynthesis in the scleractinian coral Galaxea fascicularis. J Exp Biol 205:2107–2113

    PubMed  CAS  Google Scholar 

  • Marshall AT, Wright A (1998) Coral calcification: autoradiography of a scleractinian coral Galaxea fascicularis after incubation in 45Ca and 14C. Coral Reefs 17:37–47

    Article  Google Scholar 

  • Meibom A, Cuif J-P, Mostefaoui S, Dauphin Y, Houlbrèque F, Meibom K, Dunbar R (2008) Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72:1555–1569

    Article  CAS  Google Scholar 

  • Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran C, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata: characterization, localization and role in biomineralization. J Biol Chem 282:25475–25484

    Article  Google Scholar 

  • Nothdurft LD, Webb G (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: Constraints on spatial resolution in geochemical sampling. Facies 53:1–26

    Article  Google Scholar 

  • Rollion-Bard C, Blamart D, Cuif J-P, Juillet-Leclerc A (2003) Microanalysis of C and O isotopes of azooxanthallate and zooxanthellate corals by ion microprobe. Coral Reefs 22:405–415

    Article  Google Scholar 

  • Rougée L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the scleractinian coral Pocillopora damicornis following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187

    Article  PubMed  Google Scholar 

  • Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921

    Article  PubMed  CAS  Google Scholar 

  • Sinclair D (2005) Correlated trace element “vital effects” in tropical corals: A new geochemical tool for probing biomineralization. Geochim Cosmochim Acta 69:3265–3284

    Article  CAS  Google Scholar 

  • Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium-calcium thermometry in coral skeletons. Science 204:404–407

    Article  PubMed  CAS  Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: A biocalcification proxy. Acta Palaeontol Pol 48:497–530

    Google Scholar 

  • Swart PK, Elderfield H, Greaves MJ (2002) A high-resolution calibration of Sr/Ca thermometry using the Caribbean coral Montastraea annularis. Geochem Geophys Geosyst 3 8402 doi:10.1029/2002GC000306

  • Tambutté E, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    Google Scholar 

  • Tambutté E, Allemand D, Zoccola D, Meibom A, Lotto S (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Article  Google Scholar 

  • Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins JF (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azoxanthellate coral Tubastrea aurea. Mar Biol 151:71–83

    Article  Google Scholar 

  • Thébault J, Chauvaud L, Clavier J, Fichez R, Morize E (2006) Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar Biol 149:257–267

    Article  Google Scholar 

  • Thunell S (2000) Porphyrins, porphyrin metabolism and porphyries. I. Update. Scand J Clin Lab Investig 60:509–540

    Article  CAS  Google Scholar 

  • Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol C 122:121–129

    PubMed  CAS  Google Scholar 

  • Wilbur K, Jodrey L (1956) Studies on shell formation V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Collier, B. Gaume, S. Shafir, C. Kopp, J. Martinez and A. Thomen are thanked for fruitful discussions. We gratefully acknowledge support from the Monahan Foundation and the Franco-American commission. This work was supported in part by the European Research Council Advanced Grant 246749 (BIOCARB), the MNHN program ATM “Biomineralizations”, grants from the CNRS (“InterVie” and “PIR Interface”) and a grant from the Polish Ministry of Science and higher education (project N307-015733). The manuscript has benefited substantially from constructive reviews by Dr. Nicky Allison, Dr. Alex Gagnon and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Brahmi or A. Meibom.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 79 kb)

Supplementary material 2 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brahmi, C., Domart-Coulon, I., Rougée, L. et al. Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales. Coral Reefs 31, 741–752 (2012). https://doi.org/10.1007/s00338-012-0890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0890-3

Keywords

Navigation