Skip to main content

Advertisement

Log in

Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Marine dinoflagellates in the genus Symbiodinium are primarily known for their symbiotic associations with invertebrates and protists, although they are also found free-living in nanoplankton and microphytobenthic communities. Free-living Symbiodinium are necessary for hosts that must acquire their symbionts anew each generation and for the possible reestablishment of endosymbiosis in bleached adults. The diversity and ecology of free-living Symbiodinium are not well studied by comparison with their endosymbiotic counterparts, and as a result, our understanding of the linkages between free-living and endosymbiotic Symbiodinium is poor. Here, we begin to address this knowledge gap by describing the genetic diversity of Symbiodinium in the surface water and reef sediments of Hawai‘i and Florida using Symbiodinium-specific primers for the hypervariable region of the chloroplast 23S domain V (cp23S-HVR). In total, 29 Symbiodinium sequence types were detected, 16 of which were novel. The majority of Symbiodinium sequence types in free-living environments belonged to clades A and B, but smaller numbers of sequence types belonging to clades C, D, and G were also detected. The majority of sequences recovered from Hawai‘i belonged to clades A and C and those from Florida to clade B. Such distribution patterns are consistent with the endosymbiotic diversity previously reported for these two regions. The ancestral sequence types in each clade were typically recovered from surface water and sediments both in Hawai‘i and Florida and have been previously reported as endosymbionts of a range of invertebrates, suggesting that these types have the capacity to exploit a range of very different habitats. More derived sequence types in clades A, B, C, and G were not recovered here, suggesting they are potentially restricted to endosymbiotic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adams LM, Cumbo VR, Takabayashi M (2009) Exposure to sediments enhances primary acquisition of Symbiodinium by asymbiotic coral larvae. Mar Ecol Prog Ser 377:149–156

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic logical alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Apprill AM, Gates RD (2007) Recognizing diversity in coral symbiotic dinoflagellate communities. Mol Ecol 16:1127–1134

    Article  PubMed  CAS  Google Scholar 

  • Baghdasarian G, Muscatine L (2000) Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. Biol Bull 199:278–286

    Article  PubMed  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

    Article  Google Scholar 

  • Blasco D (1978) Observations on the diel migration of marine dinoflagellates off the Baja California coast. Mar Biol 46:41–47

    Article  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–325

    Article  Google Scholar 

  • Carlos AA, Baillie BK, Kawachi M, Maruyama TA (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from Tridacnids (Bivalvia), Cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062

    Article  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Coffroth MA, Lewis CL, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbiosis with reef cnidarians. Curr Biol 16:R985–R988

    Article  PubMed  CAS  Google Scholar 

  • Correa AMS, Baker AC (2009) Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 28:81–93

    Article  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed  Google Scholar 

  • Edmunds PJ, Gates RD, Leggat W, Hoegh-Guldberg O, Allen-Requa L (2005) The effect of temperature on the size and population density of dinoflagellates in larvae of the reef coral Porites astreoides. Invertebr Biol 124:185–193

    Article  Google Scholar 

  • Fitt WK (1985) Effect of different strains of zooxanthellae Symbiodinium microadriaticum on growth and survival of their coelenterate and molluscan hosts. Proc 5th Int Coral Reef Symp 6:131–136

    Google Scholar 

  • Gou W, Sun J, Zhen Y, Xin Z, Yu Z, Li R (2003) Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaozhou Bay, P.R. China. J Exp Mar Biol Ecol 296:135–144

    Article  CAS  Google Scholar 

  • Goulet TL, Simmons C, Goulet D (2008) Worldwide biogeography of Symbiodinium in tropical octocorals. Mar Ecol Prog Ser 355:45–58

    Article  Google Scholar 

  • Granados C, Camargo C, Zea S, Sánchez JA (2008) Phylogenetic relationships among zooxanthellae (Symbiodinium) associated to excavating sponges (Cliona spp.) reveal an unexpected lineage in the Caribbean. Mol Phylogenet Evol 49:554–560

    Article  PubMed  CAS  Google Scholar 

  • Gray JS (1988) Organelle origins and ribosomal RNA. Biochem Cell Biol 66:325–348

    Article  PubMed  CAS  Google Scholar 

  • GuoFu C, GuangCe W, ChunYun Z, BaiCheng Z (2008) Morphological and phylogenetics analysis of a Gymnodinium-like species from the Chinese Coast. Chin Sci Bull 53:561–567

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    PubMed  CAS  Google Scholar 

  • Harrison PL, Wallace CC (1990) Coral reproduction. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs. Elsevier, Amsterdam

    Google Scholar 

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Hill M, Allenby A, Ramsby B, Schonberg C, Hill A (2011) Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host-specific symbiont lineages. Mol Phylogenet Evol 59:81–88

    Article  PubMed  Google Scholar 

  • Hirose M, Yamamoto H, Nonaka M (2008a) Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp. Coral Reefs 27:247–254

    Article  Google Scholar 

  • Hirose M, Reimer JD, Hidaka M, Suda S (2008b) Phylogenetic analyses of potentially free-living Symbiodinium spp. isolated from coral reef sand in Okinawa, Japan. Mar Biol 155:105–112

    Article  Google Scholar 

  • Jones R, Yellowlees JD (1997) Regulation and control of intracellular algae (zooxanthellae) in hard corals. Philos Trans R Soc Lond Ser B 352:457–468

    Article  Google Scholar 

  • Kinzie RA III, Chee GS (1979) The effect of different zooxanthellae on the growth of experimentally reinfected hosts. Biol Bull 156:315–327

    Article  PubMed  Google Scholar 

  • Kinzie RA III, Takayama M, Santos SR, Coffroth MA (2001) The adaptive bleaching hypothesis: Experimental tests of critical assumptions. Biol Bull 200:51–58

    Article  PubMed  Google Scholar 

  • Koike K, Yamashita H, Oh-Uchi A, Tamaki M, Hayashibara T (2007) A quantitative real-time PCR method for monitoring Symbiodinium in the water column. Galaxea 9:1–12

    Article  Google Scholar 

  • Krupp DA (1983) Sexual reproduction and early development of the solitary coral Fungia scutaira (Antozoa: Scleractinia). Coral Reefs 2:159–164

    Article  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004a) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Done T, Schmidt GW, Fitt WK, Hoegh-Guldberg O (2004b) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Article  Google Scholar 

  • Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–157

    Article  PubMed  CAS  Google Scholar 

  • Little F, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  PubMed  CAS  Google Scholar 

  • Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53

    Article  Google Scholar 

  • Manning M, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  • Moreira D, López-García P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen LT, Richardson K (2003) Vertical microscale patchiness in nano- and microplankton distributions in a stratified estuary. J Plankton Res 25:783–797

    Article  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Nozawa Y, Harrison PL (2005) Temporal settlement patterns of larvae of the broadcast spawning reef coral Favites chinensis and the broadcast spawning and brooding reef coral Goniastrea aspera from Okinawa, Japan. Coral Reefs 24:274–282

    Article  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodiniumlike endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Google Scholar 

  • Pochon X, LaJeunesse TC, Pawloski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Article  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Garcia-Cuetos L, Baker AC, Castella E, Pawlowski J (2007) One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in soritid foraminifera. Coral Reefs 26:867–882

    Article  Google Scholar 

  • Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka L, Logan D, Gates R (2010) Comparison of endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  • Porto I, Granados C, Restrepo JC, Sanchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE 3:e2160

    Article  PubMed  Google Scholar 

  • Richmond RH, Hunter CL (1990) Reproduction and recruitment of corals: comparisons among the Caribbean, the tropical Pacific and the Red Sea. Mar Ecol Prog Ser 60:185–203

    Article  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  PubMed  CAS  Google Scholar 

  • Samanata D, Mukhopadhyay D, Chowdhury S, Ghosh J, Pal S, Basu A, Bhattacharya A, Das A, Das D, DasGupta C (2008) Protein folding by Domain V of Escherichia coli 23S rRNA: Specificity of RNA-protein interactions. J Bacteriol 190:3344–3352

    Article  Google Scholar 

  • Santos SR, Taylor DJ, Coffroth MA (2001) Genetic comparisons of freshly isolated versus cultured symbiotic dinoflagellates: Implications for extrapolating to the intact symbiosis. J Phycol 37:900–912

    Article  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RA III, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  PubMed  CAS  Google Scholar 

  • Santos SR, Guiterrez-Rodriguez C, Coffroth MA (2003) Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in Domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Mar Biotechnol 5:130–140

    PubMed  CAS  Google Scholar 

  • Schönberg CHL, Loh W (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis Thele, 1900. Mar Ecol Prog Ser 299:157–166

    Article  Google Scholar 

  • Schönberg CHL, Suwa R, Hidaka M, Loh WKW (2008) Sponge and coral zooxanthellae in heat and light: preliminary results of photochemical efficiency monitored with pulse amplitude modulated fluorometry. Mar Ecol 29:247–258

    Article  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts-symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Nat Acad Sci USA 105:9256–9261

    Article  PubMed  CAS  Google Scholar 

  • Stat M, Pochon X, Cowie ROM, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96

    Article  CAS  Google Scholar 

  • Stimson J, Kinzie R (1991) The diel pattern of release of zooxanthellae by colonies of Pocillopora damicornis maintained under control and nitrogen-enriched conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Taylor FJR, Hoppenrath M, Saldarriaga JF (2008) Dinoflagellate diversity and distribution. Biodivers Conserv 17:407–418

    Article  Google Scholar 

  • Thornhill DJ, Lajeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems” how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol 16:5326–5340

    Article  PubMed  CAS  Google Scholar 

  • Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS One 4:e6262

    Article  PubMed  Google Scholar 

  • Unrein F, Izaguirre I, Massana R, Balagué V, Gasol JM (2005) Nanoplankton assemblages in maritime Antarctic lakes: characterization and molecular fingerprinting comparison. Aqua Microb Ecol 40:269–282

    Article  Google Scholar 

  • van Oppen MJH, Mahiny AJ, Done TJ (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487

    Article  Google Scholar 

  • Venera-Ponton DE, Diaz-Pulido G, Rodriguez-Lanetty M, Hoegh-Guldberg O (2010) Presence of Symbiodinium spp. in macroalgal microhabitats from the southern Great Barrier Reef. Coral Reefs 29:1049–1060

    Article  Google Scholar 

  • Werner U, Blazejak A, Bird P, Eickert G, Schoon R, Abed RMM, Bissett A, de Beer D (2008) Microbial photosynthesis in coral reef sediments (Heron Reef, Australia). Estuar Coast Shelf Sci 76:876–888

    Article  Google Scholar 

  • Yacobovitch T, Benayahu Y, Weis VM (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens (Cnidaria). J Exp Mar Biol Ecol 298:35–48

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Oceanic and Atmospheric Administration, Project #R/CR-16, which is sponsored by the University of Hawai‘i Sea Grant College Program (NA05OAR4171048 to M.T.), a National Science Foundation Award (OCE-0752604 to R.D.G.), the Swiss National Science Foundation (PBGEA-115118 to X.P.), the School of Ocean and Earth Science and Technology at the University of Hawai‘i and the Edwin Pauley Foundation. Nathaniel Olson, Renee Shutt, and Monika Frazier provided assistance and were supported by Research Experience for Undergraduate internship program (NSF #0453630; PI D.K. Price) and the University of Hawai‘i Experimental Program to Stimulate Competitive Research (NSF EPS0554657). We thank Michiko Ojimi, Vivian Cumbo, Paula Ayotte, Mark Manuel, Nakoa Goo, Nancy Chaney, and Kevin Kaluna for field support. Florida Keys National Marine Sanctuary permitted our collections (permit number FKNMS-2008-049). This is Hawai‘i Sea Grant publication JC-08-32, Hawai‘i Institute of Marine Biology publication contribution #1437, and School of Ocean and Earth Science and Technology contribution #8116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Takabayashi.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takabayashi, M., Adams, L.M., Pochon, X. et al. Genetic diversity of free-living Symbiodinium in surface water and sediment of Hawai‘i and Florida. Coral Reefs 31, 157–167 (2012). https://doi.org/10.1007/s00338-011-0832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0832-5

Keywords

Navigation