Skip to main content
Log in

Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The biomineralization process and skeletal growth dynamics of azooxanthellate corals are poorly known. Here, the growth rate of the shallow-water dendrophyllid scleractinian coral Balanophyllia regia was evaluated with calcein-labeling experiments that showed higher lateral than vertical extension. The structure, mineralogy and trace element composition of the skeleton were characterized at high spatial resolution. The epitheca and basal floor had the same ultrastructural organization as septa, indicating a common biological control over their formation. In all of these aragonitic skeletal structures, two main ultrastructural components were present: “centers of calcification” (COC) also called rapid accretion deposits (RAD) and “fibers” (thickening deposits, TD). Heterogeneity in the trace element composition, i.e., the Sr/Ca and Mg/Ca ratios, was correlated with the ultrastructural organization: magnesium was enriched by a factor three in the rapid accretion deposits compared with the thickening deposits. At the interface with the skeleton, the skeletogenic tissue (calicoblastic epithelium) was characterized by heterogeneity of cell types, with chromophile cells distributed in clusters regularly spaced between calicoblasts. Cytoplasmic extensions at the apical surface of the calicoblastic epithelium created a three-dimensional organization that could be related to the skeletal surface microarchitecture. Combined measurements of growth rate and skeletal ultrastructural increments suggest that azooxanthellate shallow-water corals produce well-defined daily growth steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abolins-Krogis A (1973) Fluorescence and histochemical studies of the calcification-initiating lipofuscin type pigment granules in the shell-repair membrane of the snail Helix pomatia. Z Zellforsch 142:205–221

    Article  CAS  PubMed  Google Scholar 

  • Adkins JF, Boyle EA, Curry WB, Lutringer L (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D (2004) Biomineralization in reef-building corals: from molecular mechanisms to environmental control. Comptes Rendus Palevol 3:453–467

    Article  Google Scholar 

  • Altieri A (2003) Settlement cues in the locally dispersing temperate cup coral Balanophyllia elegans. Mar Biol 204:241–245

    Google Scholar 

  • Barnes J (1972) The structure and formation of growth-ridges in scleractinian coral skeletons. Proc R Soc Lond, B 182:331–350

    Article  Google Scholar 

  • Bischoff WD, Bishop FC, Mackenzie FT (1983) Biogenically produced magnesian calcite: inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am Mineral 68:1183–1188

    CAS  Google Scholar 

  • Blamart D, Rollion-Bard C, Cuif JP, Juillet-Leclerc A, Lutringer A, Van Weering T, Henriet JP (2005) C and O isotopes in a deep sea coral (Lophelia pertusa) related to skeletal microstructure. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp 1005–1020

    Chapter  Google Scholar 

  • Borzecka-Prokop B, Weselucha-Birczynska A, Koszowska E (2007) MicroRaman, PXRD, EDS and microscopic investigation of magnesium calcite biomineral phases. The case of sea urchin biominerals. J Mol Struct 828:80–90

    Article  CAS  Google Scholar 

  • Bourne GC (1887) On the anatomy of Mussa and Euphyllia, and the morphology of the madreporarian skeleton. Q J Microsc Sci, London 41:499–547

    Google Scholar 

  • Cairns SD (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithson Contrib Zool 615:75 p

    Google Scholar 

  • Cuif JP, Dauphin Y (1998) Microstructural and physico-chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläontol Z 72:257–270

    Google Scholar 

  • Cuif JP, Dauphin Y (2005) The two-step mode of growth in the scleractinian coral skeletons from the micrometer to the overall scale. J Struct Biol 150:319–331

    Article  PubMed  Google Scholar 

  • Cuif JP, Lecointre G, Perrin C, Tillier A, Tillier S (2003) Patterns of septal biomineralization in Scleractinia compared to their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32:459–473

    Article  Google Scholar 

  • Domart-Coulon I, Traylor-Knowles N, Peters E, Elbert D, Downs C, Price K, Stubbs J, McLaughlin S, Cox E, Aeby G, Brown P, Ostrander G (2006) Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa. Coral Reefs 25:531–543

    Article  Google Scholar 

  • Durham JW (1949) Ontogenetic stages of some simple corals. University of California Publications. Bull Depart Geol Sci 28:137–172

    Google Scholar 

  • Gagnon AC, Adkins JF, Fernandez D, Robinson LF (2007) Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet Sci Lett 261:280–295

    Article  CAS  Google Scholar 

  • Garrabou J, Marschal C, Harmelin JG, Pichon M (2004) A new method for measuring and age in the precious red coral Corallium rubrum. Coral Reefs 23:423–432

    Article  Google Scholar 

  • Goldberg WM (2001) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33:376–387

    Article  CAS  PubMed  Google Scholar 

  • Gosse PH (1860) A history of the British sea-anemones and corals. Van Voorst (eds) Actinologia Britannica, London, 362 p

  • Griffith WP (1970) Raman studies on rock-forming minerals. II. Minerals containg MO3, MO4 and MO6 groups. J Chem Soc A 113:286–291

    Article  Google Scholar 

  • Guillaume M, Semenoff-Tian-Chansky P (1991) Stries semi-journalières chez un tetracoralliaire (Bothrophyllum proteum) du Carbonifère supérieur. Implication dans la détermination des rythmes de croissance. Compt Rendus Acad Sci IIa Sci Terre Planets 312:1401–1407

    Google Scholar 

  • Houlbrèque F, Meibom A, Cuif JP, Stolarski J, Marrocchi Y, Ferrier-Pagés C, Domart-Coulon I, Dunbar R (2009) Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites. Geophys Res Lett doi 36 L04604 [doi:10.1029/2008GL036782]

  • Johnston IS (1976) The tissue-skeleton interface in newly-settled polyps of the reef coral Pocillopora damicornis. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, pp 249–260

    Google Scholar 

  • Lyons K (1973) Collar cells in planula and adult tentacle ectoderm of the solitary coral Balanophyllia regia (Anthozoa: Eupsammiidae). Z Zellforsch Mikrosk Anat 145:57–74

    Article  CAS  PubMed  Google Scholar 

  • Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639

    Article  CAS  Google Scholar 

  • Marshall AT, Clode PT, Russell R, Prince K, Stern R (2007) Electron and ion microprobe analysis of calcium distribution and transport in coral tissues. J Exp Biol 210:2453–2463

    Article  CAS  PubMed  Google Scholar 

  • Martoja R, Martoja M (1967) Initiation aux techniques de l’histologie animale. Masson et Cie (eds), Paris, 345 p

  • Meibom A, Cuif JP, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar R (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31 [doi:10.1029/2004GL021313]

  • Meibom A, Domart-Coulon I, Yurimoto H, Cuif JP, Houlbrèque F, Constanz BR, Dauphin Y, Tambutte E, Allemand D, Wooden J, Dunbar BR (2006) Vital effects in coral skeleton composition displays strict three-dimensional control. Geophys Res Lett 33 L11608 [doi:10.1029/2006GL025968]

  • Meibom A, Mostefaoui S, Cuif JP, Dauphin Y, Houlbrèque F, Dunbar BR, Constantz B (2007) Biological forcing controls the chemistry of reef-building coral skeleton. Geophys Res Lett 34 L02601 [doi:10.1029/2006GL028657]

  • Meibom A, Cuif JP, Houlbrèque F, Mostefaoui S, Dauphin Y, Meibom K, Dunbarc R (2008) Compositional variations at ultra-structure length scales in coral skeleton. Geochim Cosmochim Acta 72:1555–1569

    Article  CAS  Google Scholar 

  • Muscatine L, Tambutte E, Allemand D (1997) Morphology of corals desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16:205–213

    Article  Google Scholar 

  • Nothdurft LD, Webb G (2007) Microstructure of common reef-building coral genera Acropora, Pocillopora, Goniastrea and Porites: constraints on spatial resolution in geochemical sampling. Facies 53:1–26

    Article  Google Scholar 

  • Ogilvie M (1897) Microscopic and systematic study of madreporarian types of corals. Philos Trans R Soc 187B:83–345

    Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255

    Article  Google Scholar 

  • Perrin C, Smith DC (2007a) Earliest steps of diagenesis in living scleractinian corals: Evidence from ultrastructural pattern and Raman Spectroscopy. J Sediment Res B 6:495–507

    Article  Google Scholar 

  • Perrin C, Smith DC (2007b) Decay of skeletal organic matrices and early diagenesis in coral skeletons. Comptes Rendus Paleovol 6:253–260

    Article  Google Scholar 

  • Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S (2005) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24:149–156

    Article  Google Scholar 

  • Rodolpho-Metalpa R, Peirano A, Houlbrèque F, Abbate M, Ferrier-Pages C (2008) Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa. Coral Reefs 27:17–25

    Article  Google Scholar 

  • Roniewicz E, Stolarski J (1999) Evolutionary trends in the epithecate scleractinian corals. Acta Palaeontol Pol 44:131–166

    Google Scholar 

  • Rousseau M, Lopez E, Couté A, Mascarell M, Smith DC, Naslain R, Bourrat X (2005) Sheet nacre growth mechanism: a Voronoi model. J Struct Biol 149:149–157

    Article  PubMed  Google Scholar 

  • Silvé C, Lopez E, Vidal B, Smith DC, Camprasse S, Camprasse G, Couly G (1992) Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Int 51:363–369

    Article  PubMed  Google Scholar 

  • Stolarski J (1995) Ontogenetic development of the thecal structures in caryophylliine scleractinian corals. Acta Palaeontol Pol 40:19–44

    Google Scholar 

  • Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48:497–530

    Google Scholar 

  • Tambutté E, Allemand D, Zoccola D, Meibom A, Lotto S, Caminiti S, Tambutté S (2007) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26:517–529

    Article  Google Scholar 

  • Thébault J, Chauvaud L, Clavier C, Fichez R, Morize E (2006) Evidence of a 2-day periodicity of striae formation in the tropical scallop Comptopallium radula using calcein marking. Mar Biol 149:257–267

    Article  Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders, families, and genera of the Scleractinia. Geol Soc Am Spec Pap 44:1–363

    Google Scholar 

  • Wards S (1994) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14:87–90

    Article  Google Scholar 

  • Webster N, Smith L, Heyward A, Watts J, Webb R, Blackall L, Negri A (2004) Metamorphosis of a Scleractinian coral in response to microbial biofilms. Appl Environ Microbiol 70:1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Wright O, Marshall A (1991) Calcium transport across the isolated oral epithelium of scleractinian corals. Corals Reefs 10:37–40

    Article  Google Scholar 

  • Yonge CM (1932) A note on Balanophyllia regia, the only Eupsammiid coral in the British fauna. J Mar Biol Assoc 18:219–224

    Article  Google Scholar 

  • Zibrowius, H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mémoires de l’Institut Océanograhique, Monaco 11:391p

Download references

Acknowledgments

We thank the staff and director of the Station de Biologie Marine de Concarneau (MNHN) for help in field collection and access to aquarium and lab facilities, M. Martin (MNHN) for histology and G. Mascarell (MNHN) for SEM assistance. We thank J.-P. Cuif, H. Zibrowius and B. Gaume for helpful discussions. This work was supported in part by the Agence National de la Recherche and by the Programme PluriFormation PPF ‘Biomineralization’ of the MNHN funded by the Ministère délégué à l’Enseignement supérieur et à la Recherche. The National NanoSIMS facility at the Muséum National d’Histoire Naturelle was established by funds from the CNRS, Région Île de France, Ministère délégué à l’Enseignement supérieur et à la Recherche and the Muséum itself.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Domart-Coulon.

Additional information

Communicated by Geology Editor Prof. Bernhard Riegl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brahmi, C., Meibom, A., Smith, D.C. et al. Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia . Coral Reefs 29, 175–189 (2010). https://doi.org/10.1007/s00338-009-0557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-009-0557-x

Keywords

Navigation