Skip to main content

Advertisement

Log in

High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01–0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aliño PM, Coll JJ (1989) Observations of the synchronized mass spawning and postsettlement activity of octocorals on the Great Barrier Reef, Australia: Biological aspects. Bull Mar Sci 43:697–707

    Google Scholar 

  • Andrews JC (1983) Water masses, nutrient levels, and seasonal drift on the outer central Queensland Shelf (Great Barrier Reef). Aust J Mar Fresh Res 34:821–834

    Article  CAS  Google Scholar 

  • Babcock RC, Heyward AJ (1986) Larval development of certain gamete-spawning corals. Coral Reefs 5:111–116

    Article  Google Scholar 

  • Baker AC (2001) Reef corals bleach to survive. Nature 411:765–766

    Article  PubMed  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbioses: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689

    Article  Google Scholar 

  • Bastidas C, Benzie JAH, Uthicke S, Fabricius KE (2001) Genetic differentiation among populations of a broadcast spawning soft coral, Sinularia flexibilis, on the Great Barrier Reef. Mar Biol 138:517–525

    Article  CAS  Google Scholar 

  • Berkelmans R, Oliver JK (1999) Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18:55–60

    Article  Google Scholar 

  • Black KP (1994) Developments in our knowledge of dispersal on the Great Barrier Reef. In: Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 159–192

    Google Scholar 

  • Blank RJ (1987) Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian stony coral Montipora verrucosa. Mar Biol 94:143–155

    Article  Google Scholar 

  • Brinkman R, Wolanski E, Deleersnijder E, McAllister F, Skirving W (2001) Oceanic inflow from the Coral Sea into the Great Barrier Reef. Estuar Coast Shelf Sci 54:655–668

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  PubMed  CAS  Google Scholar 

  • Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96

    Article  Google Scholar 

  • Coffroth MA, Lewis CF, Santos SR, Weaver JL (2006) Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr Biol 16:R985–R987

    Article  PubMed  CAS  Google Scholar 

  • Dight IJ, James MK (1994) Physical aspects of large-scale dispersal in the crown-of-thorns starfish, Acanthaster planci. In: Sammarco PW, Heron ML (eds) The bio-physics of marine larval dispersal. American Geophysical Union, Washington, DC, pp 193–214

    Google Scholar 

  • Dight IJ, James MK, Bode L (1988) Models of larval dispersal within the Great Barrier Reef: patterns of connectivity and their implications for species distributions. Proc 6th Int Coral Reef Symp 3:217–224

    Google Scholar 

  • Dight IJ, Bode L, James MK (1990) Modelling the dispersal of Acanthaster planci I. Large scale hydrodynamics, Cairns Section, Great Barrier Reef Marine Park. Coral Reefs 9:115–123

    Article  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in seven species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Drew EA (1972) The biology and physiology of algal-invertebrate symbiosis. II. The density of algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432

    Article  Google Scholar 

  • Fitt WK, Chang SS, Trench RK (1981) Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymniodinium) microadriaticum (Freudenthal) in culture. Bull Mar Sci 31:436–443

    Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–141

    Article  Google Scholar 

  • Glynn PW, Gassman NJ, Eakin CM, Cortes J, Smith DB, Guzman HM (1991) Reef coral reproduction in the eastern Pacific: Costa Rica, Panama and Galapagos Islands (Ecuador). I. Pocilloporidae. Mar Biol 109:355–368

    Article  Google Scholar 

  • Gómez-Cabrera M, del C, Ortiz JC, Loh WKW, Ward S (2008) Acquisition of symbiotic dinoflagellates (Symbiodinium) by juveniles of the coral Acropora longicyathus. Coral Reefs 27:219–226

    Article  Google Scholar 

  • Griffith JK (1994) Predation of soft corals (Octocorallia: Alcyonacea) on the Great Barrier Reef, Australia. Aust J Mar Freshw Res 45:1281–1284

    Article  Google Scholar 

  • Harii S, Kayanne H, Takigawa H, Hayashibara T, Yamamoto M (2002) Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar Biol 141:233–239

    Google Scholar 

  • Harris PT, Davies PJ (1989) Submerged reefs and terraces on the shelf of the Great Barrier Reef, Australia. Coral Reefs 8:87–98

    Article  Google Scholar 

  • Hellberg ME (2007) Footprints on water: the genetic wake of dispersal among reefs. Coral Reefs 26:463–473

    Article  Google Scholar 

  • Hirose M, Kinzie RAIII, Hidaka M (2001) Timing and process of entry of zooxanthellae into oocytes of hermatypic corals. Coral Reefs 20:273–280

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hughes TP, Baird AH, Dinsdale EA, Harriott VJ, Moltschaniwskj NA, Pratchett MS, Tanner JE, Willis BL (2002) Detecting regional variation using meta-analysis and large-scale sampling: latitudinal patterns in recruitment. Ecology 83:436–451

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Car M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  PubMed  CAS  Google Scholar 

  • Jokiel PL (1984) Long distance dispersal of corals by rafting. Coral Reefs 3:113–116

    Article  Google Scholar 

  • Kinzie RA (1974) Experimental infection of aposymbiotic gorgonian polyps with zooxanthellae. J Exp Mar Biol Ecol 15:335–345

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Molec Biol Evol 22:570–571

    Article  PubMed  CAS  Google Scholar 

  • Lewis DH, Coffroth MA (2004) The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science 304:1490–1492

    Article  PubMed  CAS  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  PubMed  CAS  Google Scholar 

  • Littman RA, van Oppen MJH, Willis BL (2008) Methods for sampling free-living Symbiodinium (zooxanthellae) and their distribution and abundance at Lizard Island (Great Barrier Reef). J Exp Mar Biol Ecol 364:48–53. doi:10.1016/j.jembe.2008.06.034

    Article  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell Publishing, Oxford

    Google Scholar 

  • Luick JL, Mason L, Hardy T, Furnas MJ (2007) Circulation in the Great Barrier Reef Lagoon using numerical tracers and in situ data. Cont Shelf Res 27:757–778

    Article  Google Scholar 

  • Magalon H, Adjeroud M, Veuille M (2005) Patterns of genetic variation do not correlate with geographical distance in the reef-building coral Pocillopora meandrina in the South Pacific. Mol Ecol 14:1861–1868

    Article  PubMed  CAS  Google Scholar 

  • Magalon H, Baudry E, Husté A, Adjeroud VeuilleM (2006) High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol 148:913–922

    Article  Google Scholar 

  • Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  • Muller-Parker G, D’Elia CF (1997) Interactions between corals and their symbiotic algae. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, New York, pp 96–113

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal K, Cooke R, McArdle D, McClenachan L, Newman MJH, Paredes WarnerRR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  PubMed  CAS  Google Scholar 

  • Parker GM (1984) Dispersal of zooxanthellae on coral reefs by predators on Cnidarians. Biol Bull 167:159–167

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pfiester LA, Anderson DM (1987) Dinoflagellate reproduction. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 611–648

    Google Scholar 

  • Porto I, Granados C, Restrepo JC, Sánchez JA (2008) Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE 3:e2160

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2006) R: A language and environment for statistical computing. R foundation for statistical computing,Vienna, Austria. http://www.R-project.org

  • Reed DH, Frankham R (2003) Population fitness is correlated with genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Ridgway T, Gates RD (2006) Why are there so few genetic markers available for coral population analyses? Symbiosis 41:1–7

    Article  CAS  Google Scholar 

  • Sale PF (2004) Connectivity, recruitment variation, and the structure of reef fish communities. Integr Comp Biol 44:390–399

    Article  Google Scholar 

  • Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus Symbiodinium Freudenthal are haploid. Biol Bull 204:10–20

    Article  PubMed  CAS  Google Scholar 

  • Santos SR, Gutiérrez-Rodríguez C, Lasker HR, Coffroth MA (2003) Symbiodinium sp. associations in the gorgonian Pseudopterogorgia elisabethae in the Bahamas: high levels of genetic variability and population structure in symbiotic dinoflagellates. Mar Biol 143:111–120

    Article  Google Scholar 

  • Schwarz JA, Krupp DA, Weis VM (1999) Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol Bull 196:70–79

    Article  Google Scholar 

  • Shimodaira H (2004) Approximately unbiased tests of regions using multistep-multiscale bootstrap resampling. Ann Stat 32:2616–2641

    Article  Google Scholar 

  • Smith-Keune C, van Oppen M (2006) Genetic structure of a reef building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs 25:493–502

    Article  Google Scholar 

  • Suzuki R, Shimodaira H (2006) pvclust: Hierarchical clustering with p-values via multiscale bootstrap resampling. R package version 1.2-0. http://www.is.titech.ac.jp/~shimo/prog/pvclust/

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., Skawagutti sp. nov. and Spilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481

    Article  Google Scholar 

  • Underwood JN, Souter PB, Ballment ER, Lutz AH, van Oppen MJH (2006) Development of 10 polymorphic microsatellite markers from the herbicide-bleached tissues of the brooding pocilloporid coral Seriatopora hystrix. Mol Ecol Notes 6:176–178

    Article  CAS  Google Scholar 

  • van Oppen M (2001) In vitro establishment of symbiosis in Acropora millepora planulae. Coral Reefs 20:200

    Article  Google Scholar 

  • van Oppen MJH, Gates RD (2006) Conservation genetics and resilience of reef-building corals. Mol Ecol 15:3833–3863

    Article  CAS  Google Scholar 

  • van Oppen MJH, Mieog JC, Sánchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson FP, Kobayashi D, Muscatine L (1988) Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7:29–36

    Article  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffman AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Williams DMcB, Wolanski E, Andrews JC (1984) Transport mechanisms and the potential movement of planktonic larvae in the central region of the Great Barrier Reef. Coral Reefs 3:229–236

    Article  Google Scholar 

  • Wilson K, Yutao L, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204:297–309

    Article  CAS  Google Scholar 

  • Wolanski E, Pickard GL (1985) Long-term observations of currents on the central Great Barrier Reef continental shelf. Coral Reefs 4:47–57

    Article  Google Scholar 

  • Wolanski E, Fabricius K, Spagnol S, Brinkman R (2005) Fine sediment budget on an inner-shelf coral-fringed island, Great Barrier Reef of Australia. Estuar Coast Shelf Sci 65:153–158

    Article  Google Scholar 

  • Yakobovitch T, Benayahu Y, Weis V (2004) Motility of zooxanthellae isolated from the Red Sea soft coral Heteroxenia fuscescens. J Exp Mar Biol Ecol 298:35–48

    Article  Google Scholar 

Download references

Acknowledgments

Gratitude is expressed to C Bastidas for her previous work on S. flexibilis, which provided the samples for this research project, and to PB Souter, ER Ballment and AN Muirhead for their work in developing the Symbiodinium microsatellites. Thanks are also given to L Peplow and AN Muirhead for laboratory assistance at the Australian Institute of Marine Science. This project was funded by the Australian Research Council Centre of Excellence for Coral Reef Studies, the Australian Institute of Marine Science, the Marine and Tropical Sciences Research Facility and an AIMS@JCU support grant to E Howells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. H. van Oppen.

Additional information

Communicated by Biology Editor Dr. Ruth Gates.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howells, E.J., van Oppen, M.J.H. & Willis, B.L. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium . Coral Reefs 28, 215–225 (2009). https://doi.org/10.1007/s00338-008-0450-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-008-0450-z

Keywords

Navigation