Skip to main content
Log in

Evolutionary genomics of dog domestication

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We review the underlying principles and tools used in genomic studies of domestic dogs aimed at understanding the genetic changes that have occurred during domestication. We show that there are two principle modes of evolution within dogs. One primary mode that accounts for much of the remarkable diversity of dog breeds is the fixation of discrete mutations of large effect in individual lineages that are then crossed to various breed groupings. This transfer of mutations across the dog evolutionary tree leads to the appearance of high phenotypic diversity that in actuality reflects a small number of major genes. A second mechanism causing diversification involves the selective breeding of dogs within distinct phenotypic or functional groups, which enhances specific group attributes such as heading or tracking. Such progressive selection leads to a distinct genetic structure in evolutionary trees such that functional and phenotypic groups cluster genetically. We trace the origin of the nuclear genome in dogs based on haplotype-sharing analyses between dogs and gray wolves and show that contrary to previous mtDNA analyses, the nuclear genome of dogs derives primarily from Middle Eastern or European wolves, a result more consistent with the archeological record. Sequencing analysis of the IGF1 gene, which has been the target of size selection in small breeds, further supports this conclusion. Finally, we discuss how a black coat color mutation that evolved in dogs has transformed North American gray wolf populations, providing a first example of a mutation that appeared under domestication and selectively swept through a wild relative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams JR, Kelly BT, Waits LP (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12(8):2175–2186

    Article  PubMed  CAS  Google Scholar 

  • Akey JM, Ruhe AL, Akey DT et al (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci USA 107(3):1160–1165

    Article  PubMed  CAS  Google Scholar 

  • American Kennel Club (1992) The complete dog book, 18th edn. Macmillian, New York

    Google Scholar 

  • Anderson T, vonHoldt BM, Candille SI et al (2009) Molecular and evolutionary history of melanism in North American gray wolves. Science 323(5919):1339–1343

    Article  PubMed  CAS  Google Scholar 

  • Andersone Z, Lucchini V, Randi E et al (2002) Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers. Mamm Biol 67:79–90

    Article  Google Scholar 

  • Ash EC (1927) Dogs: their history and development. Randall House, Santa Barbara

    Google Scholar 

  • Bannasch D, Young A, Myers J et al (2010) Localization of canine brachycephaly using an across breed mapping approach. PLoS ONE 5(3):e9632

    Article  PubMed  Google Scholar 

  • Bohling J, Waits LP (2011) Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Mol Ecol 20(10):2142–2156

    Article  PubMed  Google Scholar 

  • Boyko AR (2011) The domestic dog: man’s best friend in the genomic era. Genome Biol 12(2):216

    Article  PubMed  CAS  Google Scholar 

  • Boyko AR, Quignon P, Lin L et al (2009) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8(8):e1000451

    Article  Google Scholar 

  • Boyko AR, Quignon P, Li L et al (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8(8):e1000451

    Article  PubMed  Google Scholar 

  • Bryc K, Velez C, Karafet T et al (2010a) Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proc Natl Acad Sci USA 107(Suppl 2):8954–8961

    Article  PubMed  CAS  Google Scholar 

  • Bryc K, Auton A, Nelson MR et al (2010b) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci USA 107(2):786–791

    Article  PubMed  CAS  Google Scholar 

  • Buerkle CA, Lexer C (2008) Admixture as the basis for genetic mapping. Cell 23(12):686–694

    Google Scholar 

  • Cadieu E, Neff M, Quignon P et al (2009) Coat variation in the domestic dog is governed by variants in three genes. Science 326(5949):150–153

    Article  PubMed  CAS  Google Scholar 

  • Chase K, Carrier DR, Adler FR et al (2005) Interaction between the X chromosome and an autosome regulates size sexual dimorphism in Portuguese Water Dogs. Genome Res 15(12):1820–1824

    Google Scholar 

  • Chase K, Jones P, Martin A et al (2009) Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic. J Hered 100(Suppl 1):S37–S41

    Article  PubMed  CAS  Google Scholar 

  • Cheng CY, Hao WH, Patterson N et al (2009) Admixture mapping of 15, 280 African Americans identifies obesity susceptibility loci on chromosomes 5 and X. PLoS Genet 5(5):e1000490

    Article  PubMed  Google Scholar 

  • Cheng CY, Reich D, Coresh J et al (2010a) Admixture mapping of obesity-related traits in African Americans: the Atherosclerosis Risk in Communities (ARIC) study. Obesity 18:563–572

    Article  PubMed  Google Scholar 

  • Cheng CY, Reich D, Wong TY et al (2010b) Admixture mapping scans identify a locus affecting retinal vascular caliber in hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) study. PLoS Genet 6(4):e1000908

    Article  PubMed  Google Scholar 

  • Clark LA, Wahl JM, Rees CA et al (2006) Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc Natl Acad Sci USA 103(5):1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Coulson T, MacNulty DR, Stahler DR et al (2011) Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334(6060):1275–1278

    Google Scholar 

  • Darwin C (1859) The origin of species. Penguin Press, London

    Google Scholar 

  • Davis SJ, Valla FR (1978) Evidence for domestication of the dog 12, 000 years ago in the Natufian of Israel. Nature 276:608–610

    Article  Google Scholar 

  • Dayan T (1994) Early domesticated dogs of the Near East. J Archaeol Sci 21:640–663

    Article  Google Scholar 

  • Dennis-Bryan K, Clutton-Brock J (1988) Dogs of the last hundred years at the British Museum (Natural History). British Museum (Natural History), London

    Google Scholar 

  • Dodman NH, Karlsson EK, Moon-Fanelli A et al (2010) A canine chromosome 7 locus confers compulsive disorder susceptibility. Mol Psychiatr 15(1):8–10

    Article  CAS  Google Scholar 

  • Drake AG, Klingenberg CP (2010) Large-scale diversification of skull shape in domestic dogs: disparity and modularity. Am Nat 175(3):289–301

    Article  PubMed  Google Scholar 

  • Epstein H (1971) The origins of the domestic animals of Africa, vol. 1. Africana Publishing, New York

    Google Scholar 

  • Fain S, Straughan D, Taylor B (2010) Genetic outcomes of wolf recovery in the western Great Lakes states. Conserv Genet 11(5):1747–1765

    Article  Google Scholar 

  • Fredrickson R, Hedrick P (2006) Dynamics of hybridization and introgression in red wolves and coyotes. Conserv Biol 20(4):1272–1283

    Article  PubMed  Google Scholar 

  • Galibert F, Quignon P, Hitte C et al (2011) Toward understanding dog evolutionary and domestication history. C R Biol 334(3):190–196

    Article  PubMed  Google Scholar 

  • Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  Google Scholar 

  • Germonpré M, Sablin M, Stevens R et al (2009) Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J Archaeol Sci 36:473–490

    Article  Google Scholar 

  • Gray MM, Granka JM, Bustamante CD et al (2009) Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Gray MM, Sutter NB, Ostrander EA et al (2010) The IGF1 small dog haplotype is derived from Middle Eastern grey wolves. BMC Biol 8:16

    Article  PubMed  Google Scholar 

  • Housley DJ, Venta PJ (2006) The long and short of it: evidence that FGF5 is a major determinant of canine ‘hair’-itability. Anim Genet 37(4):309–315

    Article  PubMed  CAS  Google Scholar 

  • Huson HJ, Parker HG, Runstadler J et al (2010) A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog. BMC Genet 11:71

    Article  PubMed  Google Scholar 

  • Hutt FB (1979) Genetics for dog breeders. WH Freeman, San Francisco

    Google Scholar 

  • Jones P, Chase K, Martin A et al (2008) Single-nucleotide polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Kaplan NL, Hudson RR, Langley CH (1989) The “hitchhiking effect” revisited. Genetics 123:887–899

    PubMed  CAS  Google Scholar 

  • Karlsson EK, Baranowska I, Wade CM et al (2007) Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat Genet 39(11):1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Kays R, Curtis A, Kirchman JJ (2010) Rapid adaptive evolution of northeastern coyotes via hybridization with wolves. Biol Lett 6:89–93

    Article  PubMed  Google Scholar 

  • Kirkness EF, Bafna V, Halpern AL et al (2003) The dog genome: survey sequencing and comparative analysis. Science 301(5641):1898–1903

    Article  PubMed  Google Scholar 

  • Kukekova A, Trut LN, Chase K et al (2010) Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behav Genet 41(4):593–606

    Article  PubMed  Google Scholar 

  • Lindblad-Toh K, Wade CM, Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438(7069):803–819

    Article  PubMed  CAS  Google Scholar 

  • Macdonald DW, Barrett P (1993) Mammals of Britain and Europe. Harper Collins, New York

    Google Scholar 

  • McCarthy MI, Abecasis GR, Cardon LR et al (2008) Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 9(5):356–369

    Article  PubMed  CAS  Google Scholar 

  • Morey D (1994) The early evolution of the domestic dog. Am Sci 82:336–347

    Google Scholar 

  • Morey DF (2010) Dogs: domestication and the development of a social bond. Cambridge University Press, New York

    Google Scholar 

  • Olsen SJ, Olsen JW (1977) The Chinese wolf ancestor of new World dogs. Science 197:533–535

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Kruglyak L (2000) Unleashing the canine genome. Genome Res 10(9):1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Wayne RK (2005) The canine genome. Genome Res 15:1706–1716

    Google Scholar 

  • Ovodov MD, Crockford SJ, Kuzmin YV et al (2011) A 33, 000-year-old incipient dog from the Altai Mountains of Siberia: Evidence of the earliest domestication disruption by the last glacial maximum. PLoS ONE 6(7):e22821

    Article  PubMed  CAS  Google Scholar 

  • Pang JF, Kluetsch C, Zou XJ et al (2009) mtDNA data indicate a single origin for dogs south of the Yangtze River, less than 16, 300 years ago, from numerous wolves. Mol Biol Evol 26(12):2849–2864

    Article  PubMed  CAS  Google Scholar 

  • Parker HG, Ostrander EA (2005) Canine genomics and genetics: running with the pack. PLoS Genet 1(5):507–513

    Article  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB et al (2004) Genetic structure of the purebred domestic dog. Science 304(5674):1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Parker HG, vonHoldt BM, Quignon P et al (2009) An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325(5943):995–998

    Article  PubMed  CAS  Google Scholar 

  • Patterson N, Hattangadi N, Lane B et al (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74(5):979–1000

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim KL, Boyd DK, Forbes SH (1998) Testing for wolf-coyote hybridization in the Rocky Mountains using mitochondrial DNA. J Wildlife Manage 62(2):683–689

    Article  Google Scholar 

  • Pollinger JP, Bustamante CD, Fledel-Alon A et al (2005) Selective sweep mapping of genes with large phenotypic effects. Genome Res 15(12):1809–1819

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson N, Yu F et al (2007) A genomewide admixture map for Latino populations. Am J Hum Genet 80(6):1024–1036

    Article  PubMed  CAS  Google Scholar 

  • Randi E, Lucchini V (2002) Detecting rare introgression of domestic dog genes into wild wolf Canis lupus populations by Bayesian admixture analyses of microsatellite variation. Conserv Genet 3:31–45

    Article  CAS  Google Scholar 

  • Reich DE, Cargill M, Bolk A et al (2001) Linkage disequilibrium in the human genome. Nature 411:199–204

    Article  PubMed  CAS  Google Scholar 

  • Sablin MV, Khlopachev GA (2002) The earliest ice age dogs: evidence from Eliseevichi. Curr Anthropol 43:795–799

    Article  Google Scholar 

  • Salmon Hillbertz NH, Isaksson M, Karlsson EK et al (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat Genet 39(11):1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Savolainen P, Zhang YP, Luo J et al (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613

    Article  PubMed  CAS  Google Scholar 

  • Seldin MF, Posaniuc B, Price AL (2011) New approaches to disease mapping in admixed populations. Nat Rev Genet 12:523–528

    Article  PubMed  CAS  Google Scholar 

  • Shearin AL, Ostrander EA (2010a) Canine morphology: hunting for genes and tracking mutations. PLoS Biol 8(3):e1000310

    Article  PubMed  Google Scholar 

  • Shearin AL, Ostrander EA (2010b) Leading the way: canine models of genomics and disease. Dis Model Mech 3(1–2):24–34

    Google Scholar 

  • Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23(1):23–35

    Article  PubMed  CAS  Google Scholar 

  • Stephan W, Wiehe THE, Lenz MW (1992) The effect of strongly selected substitutions on neutral polymorphism: Analytical results based on diffusion theory. Theor Pop Biol 41:237–254

    Article  Google Scholar 

  • Stockard C (1941) Genetic and endocrinic basis for differences in form and behavior. Wistar Institute, Philadelphia

    Google Scholar 

  • Sundqvist AK, Bjornerfeldt S, Leonard JA et al (2006) Unequal contribution of sexes in the origin of dog breeds. Genetics 172:1121–1128

    Article  PubMed  Google Scholar 

  • Sutter NB, Ostrander EA (2004) Dog star rising: the canine genetic system. Nat Rev Genet 5(12):900–910

    Article  PubMed  CAS  Google Scholar 

  • Sutter NB, Bustamante CD, Chase K et al (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115

    Article  PubMed  CAS  Google Scholar 

  • Tang H, Coram M, Wang P et al (2006) Reconstructing genetic ancestry blocks in admixed individuals. Am J Hum Genet 79(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Vilà C, Wayne RK (1999) Hybridization between wolves and dogs. Conserv Biol 13(1):195–198

    Article  Google Scholar 

  • Vilà C, Savolainen P, Maldonado JE et al (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  PubMed  Google Scholar 

  • Vilà C, Walker C, Sundqvist A et al (2003) Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity 90(1):17–24

    Article  PubMed  Google Scholar 

  • Vilà C, Seddon J, Ellegren H (2005) Genes of domestic mammals augmented by backcrossing with wild ancestors. Trends Genet 21(4):214–218

    Article  PubMed  Google Scholar 

  • vonHoldt BM, Stahler DR, Smith DW et al (2008) The genealogy and genetic viability of reintroduced yellowstone gray wolves. Mol Ecol 17(1):252–274

    Article  PubMed  Google Scholar 

  • vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–903

    Article  PubMed  CAS  Google Scholar 

  • vonHoldt BM, Pollinger JP, Earl DA et al (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21(8):1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Wayne RK (1986a) Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution 4:243–261

    Article  Google Scholar 

  • Wayne RK (1986b) Limb morphology of domestic and wild canids: the influence of development on morphologic change. J Morphol 187:301–319

    Article  PubMed  CAS  Google Scholar 

  • Wayne RK, Ostrander EA (2007) Lessons learned from the dog genome. Trends Genet 23(11):557–567

    Article  PubMed  CAS  Google Scholar 

  • Wilcox B, Walkowicz C (1995) The atlas of dog breeds of the World, 5th edn. TFH Publications, Neptune

    Google Scholar 

  • Winkler CA, Nelson GW, Smith MW (2010) Admixture mapping comes of age. Annu Rev Genome Human Genet 11:65–89

    Article  CAS  Google Scholar 

  • Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42(7):565–569

    Article  PubMed  CAS  Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD et al (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 223:139–155

    Article  Google Scholar 

  • Zeuner FE (1963) A history of domesticated animals. Hutchinson of London, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Wayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wayne, R.K., vonHoldt, B.M. Evolutionary genomics of dog domestication. Mamm Genome 23, 3–18 (2012). https://doi.org/10.1007/s00335-011-9386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9386-7

Keywords

Navigation