Skip to main content
Log in

Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Tardive dyskinesia (TD) is a debilitating, unpredictable, and often irreversible side effect resulting from chronic treatment with typical antipsychotic agents such as haloperidol. TD is characterized by repetitive, involuntary, purposeless movements primarily of the orofacial region. In order to investigate genetic susceptibility to TD, we used a validated mouse model for a systems genetics analysis geared toward detecting genetic predictors of TD in human patients. Phenotypic data from 27 inbred strains chronically treated with haloperidol and phenotyped for vacuous chewing movements were subject to a comprehensive genomic analysis involving 426,493 SNPs, 4,047 CNVs, brain gene expression, along with gene network and bioinformatic analysis. Our results identified ~50 genes that we expect to have high prior probabilities for association with haloperidol-induced TD, most of which have never been tested for association with human TD. Among our top candidates were genes regulating the development of brain motor control regions (Zic4 and Nkx6-1), glutamate receptors (Grin1 and Grin2a), and an indirect target of haloperidol (Drd1a) that has not been studied as well as the direct target, Drd2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aberg K, Adkins DE, Bukszar J, Webb BT, Caroff SN, Miller del D, Sebat J, Stroup S, Fanous AH, Vladimirov VI, McClay JL, Lieberman JA, Sullivan PF, van den Oord EJ (2010) Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 67:279–282

    Article  PubMed  Google Scholar 

  • Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, Gralinski LE, Bell TA, Didion JD, Hua K, Nehrenberg DL, Powell CL, Steigerwalt J, Xie Y, Kelada SN, Collins FS, Yang IV, Schwartz DA, Branstetter LA, Chesler EJ, Miller DR, Spence J, Liu EY, McMillan L, Sarkar A, Wang J, Wang W, Zhang Q, Broman KW, Korstanje R, Durrant C, Mott R, Iraqi FA, Pomp D, Threadgill D, Pardo-Manuel de Villena F, Churchill GA (2011) Genetic analysis of complex traits in the emerging collaborative cross. Genome Res 21(8):1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Bakker PR, van Harten PN, van Os J (2006) Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 83:185–192

    Article  PubMed  Google Scholar 

  • Barnes DE, Robinson B, Csernansky JG, Bellows EP (1990) Sensitization versus tolerance to haloperidol-induced catalepsy: multiple determinants. Pharmacol Biochem Behav 36:883–887

    Article  PubMed  CAS  Google Scholar 

  • Barry WT, Nobel AB, Wright FA (2005) Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics 21:1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT (2011) The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 39:D842–D848

    Article  PubMed  Google Scholar 

  • Bogue MA, Grubb SC (2004) The mouse phenome project. Genetica 122:71–74

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Seeman P, Liu F (2011) Antipsychotic drug binding in the substantia nigra: an examination of high metoclopramide binding in the brains of normal, Alzheimer’s disease, Huntington’s disease, and Multiple Sclerosis patients, and its relation to tardive dyskinesia. Synapse 65:119–124

    Article  PubMed  CAS  Google Scholar 

  • Chipkin RE, Iorio LC, Coffin VL, McQuade RD, Berger JG, Barnett A (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J Pharmacol Exp Ther 247:1093–1102

    PubMed  CAS  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O’Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M, Zou F (2004) The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Crane GE (1968) Tardive dyskinesia in patients treated with major neuroleptics: a review of the literature. Am J Psychiatry 124(Suppl):40–48

    Google Scholar 

  • Crawley JN (1985) Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev 9:37–44

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Adkins DE, Pratt AL, Quackenbush CR, van den Oord EJ, Moy SS, Wilhelmsen KC, Cooper TB, Bogue MA, McLeod HL, Sullivan PF (2010) Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice. Pharmacogenomics J. doi:10.1038/tpj.2010.82

  • Dayalu P, Chou KL (2008) Antipsychotic-induced extrapyramidal symptoms and their management. Expert Opin Pharmacother 9:1451–1462

    Article  PubMed  CAS  Google Scholar 

  • Eddington ND, Young D (1990) Biliary excretion of reduced haloperidol glucuronide. Psychopharmacology 100:46–48

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann N, Christ G, Sclafani T, Melman A (2002) The effect of ovariectomy and long-term estrogen replacement on bladder structure and function in the rat. J Urol 168:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • Froemming JS, Lam YW, Jann MW, Davis CM (1989) Pharmacokinetics of haloperidol. Clin Pharmacokinet 17:396–423

    Article  PubMed  CAS  Google Scholar 

  • Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM, Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH, Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res 39:D876–D882

    Article  PubMed  Google Scholar 

  • Galili R, Mosberg Gil-AdI, Weizman A, Melamed E, Offen D (2000) Haloperidol-induced neurotoxicity–possible implications for tardive dyskinesia. J Neural Transm 107:479–490

    Article  PubMed  CAS  Google Scholar 

  • Goldstein H (1995) Multilevel statistical models. In: Searle S, Casella G, McCulloch C (eds) Variance Components. Wiley, New York

    Google Scholar 

  • Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, Smith PC, Tennant R, Bogue M, Paigen K, Harris C, Contractor T, Wiltshire T, Rusyn I, Threadgill DW (2009) Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 19:1507–1515

    Article  PubMed  CAS  Google Scholar 

  • Herken H, Erdal ME, Boke O, Savas HA (2003) Tardive dyskinesia is not associated with the polymorphisms of 5-HT2A receptor gene, serotonin transporter gene and catechol-o-methyltransferase gene. Eur Psychiatry 18:77–81

    Article  PubMed  Google Scholar 

  • Hsin-tung E, Simpson G (2000) Medication-induced movement disorders. In: Kaplan and Sadocks’s Comprehensive Textbook of Psychiatry. Lippincott, Williams and Wilkins, Philadelphia, pp 2265–2271

    Google Scholar 

  • Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D (2006) The UCSC known genes. Bioinformatics 22:1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R, Yamanouchi Y, Kinoshita Y, Hashimoto R, Williams HJ, Takeda M, Nakamura J, Nabeshima T, Owen MJ, O’Donovan MC, Honda H, Arinami T, Ozaki N, Iwata N (2010) Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 67:263–269

    Article  PubMed  CAS  Google Scholar 

  • Joreskog K (1969) A general approach to confirmatory maximum likelihood factor analysis. Psychometrika 34:183–202

    Article  Google Scholar 

  • Kaiser R, Tremblay PB, Klufmoller F, Roots I, Brockmoller J (2002) Relationship between adverse effects of antipsychotic treatment and dopamine D(2) receptor polymorphisms in patients with schizophrenia. Mol Psychiatry 7:695–705

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Koshikawa N, Fujita S, Adachi K (2011) Behavioral pharmacology of orofacial movement disorders. Int Rev Neurobiol 97:1–38

    Article  PubMed  CAS  Google Scholar 

  • Lagrue E, Abe H, Lavanya M, Touhami J, Bodard S, Chalon S, Battini JL, Sitbon M, Castelnau P (2010) Regional characterization of energy metabolism in the brain of normal and MPTP-intoxicated mice using new markers of glucose and phosphate transport. J Biomed Sci 17:91

    Article  PubMed  CAS  Google Scholar 

  • Lai IC, Wang YC, Lin CC, Bai YM, Liao DL, Yu SC, Lin CY, Chen JY, Liou YJ (2005) Negative association between catechol-O-methyltransferase (COMT) gene Val158Met polymorphism and persistent tardive dyskinesia in schizophrenia. J Neural Transm 112:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Kang SG, Choi JE, Paik JW, Kim YK, Kim SH, Lee MS, Joe SH, Jung IK, Kim L (2007) No association between dopamine D4 receptor gene -521 C/T polymorphism and tardive dyskinesia in schizophrenia. Neuropsychobiology 55:47–51

    Article  PubMed  CAS  Google Scholar 

  • Lerer B, Segman RH, Tan EC, Basile VS, Cavallaro R, Aschauer HN, Strous R, Chong SA, Heresco-Levy U, Verga M, Scharfetter J, Meltzer HY, Kennedy JL, Macciardi F (2005) Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 8:411–425

    Article  PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS (1994) A common action of clozapine, haloperidol, and remoxipride on D1- and D2-dopaminergic receptors in the primate cerebral cortex. Proc Natl Acad Sci USA 91:4353–4356

    Article  PubMed  CAS  Google Scholar 

  • Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto C, Shinkai T, Hori H, Ohmori O, Nakamura J (2004) Polymorphisms of dopamine degradation enzyme (COMT and MAO) genes and tardive dyskinesia in patients with schizophrenia. Psychiatry Res 127:1–7

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Cooper AC, Griffiths MR, Cooper AJ (2002) Acute administration of haloperidol induces apoptosis of neurones in the striatum and substantia nigra in the rat. Neuroscience 109:89–99

    Article  PubMed  CAS  Google Scholar 

  • Mohn AR, Gainetdinov RR, Caron MG, Koller BH (1999) Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98:427–436

    Article  PubMed  CAS  Google Scholar 

  • Muller DJ, Schulze TG, Knapp M, Held T, Krauss H, Weber T, Ahle G, Maroldt A, Alfter D, Maier W, Nothen MM, Rietschel M (2001) Familial occurrence of tardive dyskinesia. Acta Psychiatr Scand 104:375–379

    Article  PubMed  CAS  Google Scholar 

  • Muthén B, Muthén L (2003) Traditional latent variable modeling using Mplus: Mplus Short course notes. Muthén & Muthén, Los Angeles

    Google Scholar 

  • O’Callaghan E, Larkin C, Kinsella A, Waddington JL (1990) Obstetric complications, the putative familial-sporadic distinction, and tardive dyskinesia in schizophrenia. Br J Psychiatry 157:578–584

    Article  PubMed  Google Scholar 

  • Pan F, McMillan L, Pardo-Manuel De Villena F, Threadgill D, Wang W (2009) TreeQA: quantitative genome wide association mapping using local perfect phylogeny trees. Pac Symp Biocomput 415–426

  • Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JP (2005) CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 15:151–158

    Article  PubMed  CAS  Google Scholar 

  • Prakash N, Wurst W (2006) Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 575:403–410

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP, Templeman LA, Zhang ZJ (2005) The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 29:1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Rusyn I, Gatti DM, Wiltshire T, Kleeberger SR, Threadgill DW (2010) Toxicogenetics: population-based testing of drug and chemical safety in mouse models. Pharmacogenomics 11:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, Yagi T, Aizawa S, Inoue Y, Sugiyama H et al (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373:151–155

    Article  PubMed  CAS  Google Scholar 

  • Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008) Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858–872

    Article  PubMed  CAS  Google Scholar 

  • Simpson GM (1970) Long-acting, antipsychotic agents and extrapyramidal side effects. Dis Nerv Syst 31(Suppl):12–14

    PubMed  Google Scholar 

  • Skoblenick KJ, Castellano JM, Rogoza RM, Dyck BA, Thomas N, Gabriele JP, Chong VZ, Mishra RK (2006) Translocation of AIF in the human and rat striatum following protracted haloperidol, but not clozapine treatment. Apoptosis 11:663–672

    Article  PubMed  CAS  Google Scholar 

  • Soares-Weiser K, Fernandez HH (2007) Tardive dyskinesia. Semin Neurol 27:159–169

    Article  PubMed  Google Scholar 

  • Tandon R, Belmaker RH, Gattaz WF, Lopez-Ibor JJ Jr, Okasha A, Singh B, Stein DJ, Olie JP, Fleischhacker WW, Moeller HJ (2008) World Psychiatric Association Pharmacopsychiatry Section statement on comparative effectiveness of antipsychotics in the treatment of schizophrenia. Schizophr Res 100:20–38

    Article  PubMed  Google Scholar 

  • Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Koshikawa N, Waddington JL (2001) Topographical assessment and pharmacological characterization of orofacial movements in mice: dopamine D(1)-like vs. D(2)-like receptor regulation. Eur J Pharmacol 418:47–54

    Article  PubMed  CAS  Google Scholar 

  • Turrone P, Remington G, Nobrega JN (2002) The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci Biobehav Rev 26:361–380

    Article  PubMed  CAS  Google Scholar 

  • Turrone P, Remington G, Kapur S, Nobrega JN (2003) The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats. Psychopharmacology (Berl) 165:166–171

    CAS  Google Scholar 

  • Van Prooijen J, Van Der Kloot WA (2001) Confirmatory analysis of exploratively obtained factor structures. Educ Psychol Measure 51:777–792

    Article  Google Scholar 

  • van Woerden GM, Hoebeek FE, Gao Z, Nagaraja RY, Hoogenraad CC, Kushner SA, Hansel C, De Zeeuw CI, Elgersma Y (2009) betaCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses. Nat Neurosci 12:823–825

    Article  PubMed  Google Scholar 

  • Waddington JL, Cross AJ, Gamble SJ, Bourne RC (1983) Spontaneous orofacial dyskinesia and dopaminergic function in rats after 6 months of neuroleptic treatment. Science 220:530–532

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, de Villena FP, Churchill GA (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6:663–666

    Article  PubMed  CAS  Google Scholar 

  • Yassa R, Ananth J (1981) Familial tardive dyskinesia. Am J Psychiatry 138:1618–1619

    PubMed  CAS  Google Scholar 

  • Zaltsman Y, Shachnai L, Yivgi-Ohana N, Schwarz M, Maryanovich M, Houtkooper RH, Vaz FM, De Leonardis F, Fiermonte G, Palmieri F, Gillissen B, Daniel PT, Jimenez E, Walsh S, Koehler CM, Roy SS, Walter L, Hajnoczky G, Gross A (2010) MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol 12:553–562

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The mice used in this study were acquired as part of the Mouse Phenome Project, an ongoing international collaborative effort headquartered at The Jackson Laboratory (Bar Harbor, ME, USA). This work was supported by the Pharmacogenetics Research Network (U01 GM63340, PI Dr. McLeod), a NIMH/NHGRI Center of Excellence for Genome Sciences grant (P50 MH90338, PIs Drs. Fernando Pardo-Manuel de Villena and Sullivan), and the Mouse Behavioral Phenotyping Laboratory (NICHD P30 HD03110, PI Dr. Joseph Piven). Dr. Sullivan was supported by MH080403, MH077139, and MH074027.

Disclosures

The authors have no biomedical financial interests or potential conflicts of interest to disclose.

Online Resources

Phenotypic data from this project are available online via the Mouse Phenome Database (MPD; http://www.jax.org/phenome).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Crowley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4320 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowley, J.J., Kim, Y., Szatkiewicz, J.P. et al. Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice. Mamm Genome 23, 322–335 (2012). https://doi.org/10.1007/s00335-011-9385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-011-9385-8

Keywords

Navigation