Skip to main content
Log in

The dynamic of the t-haplotype in wild populations of the house mouse Mus musculus domesticus in Israel

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The t-haplotype, a variant of the proximal part of the mouse chromosome 17, is composed of at least four inversions and is inherited as a single genetic unit. The haplotype causes embryonic mortality or male sterility when homozygous. Genes within the complex are responsible for distortion of Mendelian transmission ratio in males. Thus, the t-haplotype in heterozygous males is transferred to over 95% of the progeny. We examined the dynamic and behavior of the t-haplotype in wild populations of the house mouse in Israel. The Israeli populations show high frequency (15%–20%) of both partial and complete t-carrying mice, supporting the suggestion that the t-complex evolved in the M. domesticus line in the Israeli region. In one population that had the highest frequency of t-carrying individuals, we compared the level of gene diversity between t-carrying and normal mice in the marker’s loci: H-2 locus of the major histocompatibility complex (MHC) on the t-haplotype of chromosome 17, three microsatellites on other chromosomes, and the mitochondrial D-loop. Genetic variability was high in all tested loci in both t and (+) mice. All t mice carried the same chromosome and showed the same H-2 haplotype. While t-carrying mice showed significant H-2 heterozygotes access, (+) mice expressed significant H-2 heterozygote deficiency. There were no differences in the level of gene diversity between t and (+) mice in the other loci. Heterozygosity level at the MHC may be an additional factor in the selective forces balancing the t-haplotype polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  • Andolfatto P (2001) Adaptive hitchhiking effects on genome variability. Curr Opin Genet Dev 11, 635-641

    Article  PubMed  CAS  Google Scholar 

  • Ardlie KG (1998) Putting the brake on drive: meiotic drive of t haplotypes in natural populations of mice. Trends Genet 14, 189-193

    Article  PubMed  CAS  Google Scholar 

  • Ardlie KG, Silver LM (1996) Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive. Genetics 144, 1787-1797

    PubMed  CAS  Google Scholar 

  • Artzt K, Shin HS, Bennett D (1982) Gene mapping within the T/t complex of the mouse. II. Anomalous position of the H-2 complex in t haplotypes. Cell 28, 471-476

    Article  PubMed  CAS  Google Scholar 

  • Bauer H, Willert J, Koschorz B, Herrmann BG (2005) The t complex-encoded GTPase-activating protein Tagap1 acts as a transmission ratio distorter in mice. Nat Genet 37, 969-973

    Article  PubMed  CAS  Google Scholar 

  • Bennett D (1978) Rescue of a lethal T/t locus genotype by chimaerism with normal embryos. Nature 272, 539

    Article  PubMed  CAS  Google Scholar 

  • Bruck D (1957) Male segregation ratio advantage as a factor in maintaining lethal alleles in wild populations of house mice. Proc Natl Acad Sci USA 43, 152-158

    Article  PubMed  CAS  Google Scholar 

  • Carroll LS, Meagher S, Morrison L, Penn DJ, Potts WK (2004) Fitness effects of a selfish gene (the Mus t complex) are revealed in an ecological context. Evolution 58, 1318-1328

    PubMed  CAS  Google Scholar 

  • Carter RS, Avadhani NG (1991) Cloning and characterization of the mouse cytochrome c oxidase subunit IV gene. Arch Biochem Biophys 288, 97-106

    Article  PubMed  CAS  Google Scholar 

  • Delarbre C, Kashi Y, Boursot P, Beckmann JS, Kourilsky P, et al. (1988) Phylogenetic distribution in the genus Mus of t-complex-specific DNA and protein markers: inferences on the origin of t-haplotypes. Mol Biol Evol 5, 120-133

    PubMed  CAS  Google Scholar 

  • Dod B, Litel C, Makoundou P, Orth A, Boursot P (2003) Identification and characterization of t haplotypes in wild mice populations using molecular markers. Genet Res 81, 103-114

    Article  PubMed  CAS  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256, 50-52

    Article  PubMed  CAS  Google Scholar 

  • Drickamer L, Lenington S, Erhart M, Robinson AS (1995) Mus domesticus in large outdoor pens: implications for models of t-complex gene frequency. Am Midl Nat 133, 283-289

    Article  Google Scholar 

  • Erhart MA, Phillips SJ, Nadeau JH (1988) Contrasting patterns of evolution in the proximal and distal regions of the mouse t complex. Curr Top Microbiol Immunol 137, 70-76

    PubMed  CAS  Google Scholar 

  • Erhart MA, Lekgothoane S, Grenier J, Nadeau JH (2002) Pattern of segmental recombination in the distal inversion of mouse t haplotypes. Mamm Genome 13, 438-444

    Article  PubMed  CAS  Google Scholar 

  • Figueroa F, Golubic M, Nizetic D, Klein J (1985) Evolution of mouse major histocompatibility complex genes borne by t chromosomes. Proc Natl Acad Sci USA 82, 2819-2823

    Article  PubMed  CAS  Google Scholar 

  • Figueroa F, Neufeld E, Ritte U, Klein J (1988) t-Specific DNA polymorphism among wild mice from Israel and Spain. Genetics 119, 157-160

    PubMed  CAS  Google Scholar 

  • Fox H, Martin G, Lyon MF, Herrmann B, Frischauf A-M, et al. (1985) Molecular probes define different regions of the t complex. Cell 40, 63-69

    Article  PubMed  CAS  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57, 1707-1722

    PubMed  CAS  Google Scholar 

  • Hammer MF, Silver LM (1993) Phylogenetic analysis of the alpha-globin pseudogene-4 (Hba-ps4) locus in the house mouse species complex reveals a stepwise evolution of t haplotypes. Mol Biol Evol 10, 971-1001

    PubMed  CAS  Google Scholar 

  • Hammer MF, Schimenti J, Silver LM (1989) Evolution of mouse chromosome 17 and the origin of inversions associated with t haplotypes. Proc Natl Acad Sci USA 86, 3261-3265

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56, 1902-1908

    PubMed  Google Scholar 

  • Hedrick PW, Thomson G (1983) Evidence for balancing selection at HLA. Genetics 104, 449-456

    PubMed  CAS  Google Scholar 

  • Herrmann B, Bucan M, Mains PE, Frischauf AM, Silver LM, et al. (1986) Genetic analysis of the proximal portion of the mouse t complex: evidence for a second inversion within t haplotypes. Cell 44, 469-476

    Article  PubMed  CAS  Google Scholar 

  • Huang SW, Ardlie KG, Yu HT (2001) Frequency and distribution of t-haplotypes in the Southeast Asian house mouse (Mus musculus castaneus) in Taiwan. Mol Ecol 10, 2349-2354

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 132, 415-435

    Article  Google Scholar 

  • Ihle S, Ravaoarimanana I, Thomas M, Tautz D (2006) An analysis of signatures of selective sweeps in natural populations of the house mouse. Mol Biol Evol 23, 790-797

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural History of the Major Histocompatibility Complex. (New York: John Wiley and Sons)

    Google Scholar 

  • Klein J, Figueroa F (1986) Evolution of the major histocompatibility complex. Crit Rev Immunol 6, 295-386

    PubMed  CAS  Google Scholar 

  • Klein J, Sipos P, Figueroa F (1984) Polymorphism of t-complex genes in European wild mice. Genet Res 44, 39-46

    Article  Google Scholar 

  • Lawson PR, Perkins VC, Holmskov U, Reid KB (1999) Genomic organization of the mouse gene for lung surfactant protein D. Am J Respir Cell Mol Biol 20, 953-963

    PubMed  CAS  Google Scholar 

  • Lenington S (1989) The t-complex: a story of genes, behavior and populations. Adv Study Behav 20, 51-86

    Article  Google Scholar 

  • Lenington S, Heissler IL (1991) Behavioral reduction in the transmission of deleterious t-haplotypes by wild house mice. Am Nat 137, 365-378

    Article  Google Scholar 

  • Lenington S, Egid K, Williams J (1988) Analysis of a genetic recognition system in wild house mice. Behav Gen 18, 549-564

    Article  CAS  Google Scholar 

  • Lenington S, Coopersmith C, Williams J (1992) Genetic basis of mating preferences in wild house mice. Am Zool 32, 40-47

    Google Scholar 

  • Lenington S, Drickamer LC, Robinson AS, Erhart M (1996) Genetic basis for male aggression and survivorship in wild house mice (Mus domesticus). Agg Behav 22, 135-145

    Article  Google Scholar 

  • Lewontin RC, Dunn LC (1960) The evolutionary dynamics of a polymorphism in the house mouse. Genetics 45, 705-722

    PubMed  CAS  Google Scholar 

  • Love JM, Knight AM, McAleer MA, Todd JA (1990) Toward construction of a high resolution map of the mouse genome using PCR-analyzed microsatellites. Nucleic Acids Res 18, 4123-4130

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (2003) Transmission ratio distortion in mice. Annu Rev Genet 37, 393-408

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (2005) Elucidating mouse transmission ratio distortion. Nat Genet 37, 924–925

    Article  PubMed  CAS  Google Scholar 

  • McClelland EE, Penn DJ, Potts WK (2003) Major histocompatibility complex heterozygote superiority during coinfection. Infect Immun 71, 2079-2086

    Article  PubMed  CAS  Google Scholar 

  • Miller MP (1997) Tools for Population Genetic Analyses (TFPGA) version 1.3. (Department of Biological Sciences, Box 5640, Northern Arizona University, Flagstaff, AZ 86011-5640, USA)

  • Morita T, Kubota H, Murata K, Nozaki M, Delarbre C, et al. (1992) Evolution of the mouse t haplotype: recent and worldwide introgression to Mus musculus. Proc Natl Acad Sci USA 89, 6851-6855

    Article  PubMed  CAS  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86, 2766-2770

    Article  PubMed  CAS  Google Scholar 

  • Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99, 11260-11264

    Article  PubMed  CAS  Google Scholar 

  • Raymond ML, Rousset F (1995) An exact test for population differentiation. Evolution 49, 1280–1283

    Article  Google Scholar 

  • Ritte U, Neufeld E, O’hUigin C, Figueroa F, Klein J (1991) Origins of H-2 polymorphism in the house mouse. II. Characterization of a model population and evidence for heterozygous advantage. Immunogenetics 34, 164-173

    Article  PubMed  CAS  Google Scholar 

  • Ruvinsky A, Agulnik A, Agulnik S, Rogachova M (1991) Functional analysis of mutations of murine chromosome 17 with the use of tertiary trisomy. Genetics 127, 781-788

    PubMed  CAS  Google Scholar 

  • She JX, Boehne SA, Wang TW, Bonhomme F, Wakeland EK (1991). Amplification of major histocompatibility complex class II gene diversity by intraexonic recombination. Proc Natl Acad Sci USA 88, 453-457

    Article  PubMed  CAS  Google Scholar 

  • Silver LM (1985) Mouse t haplotypes. Annu Rev Genet 19, 179-208

    PubMed  CAS  Google Scholar 

  • Silver LM, Hammer M, Fox H, Garrels J, Bucan M, et al. (1987) Molecular evidence for the rapid propagation of mouse t haplotypes from a single, recent, ancestral chromosome. Mol Biol Evol 4, 473-482

    PubMed  CAS  Google Scholar 

  • Thomas M, Ihle S, Ravaoarimanana I, Kraechter S, Wiehe T, et al. (2005) Microsatellite variability in wild populations of the house mouse is not influenced by differences in chromosomal recombination rates. Biol J Linn Soc 84, 629-635

    Article  Google Scholar 

  • van Boven M, Weissing FJ (2000) Evolution at the mouse t complex: why is the t haplotype preserved as an integral unit? Evolution 54, 1795-1808

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alona Nave for technical assistance and Jan Klein, Department of Immunogenetics, Max Planck Institute, Tubingen, Germany, for kindly providing them the genetic marker probes. The authors also thank the anonymous referees whose helpful suggestions contributed significantly to this study. This work was supported by a grant from the Israel Science Foundation to SL and a grant from the Israel Science Foundation (556/93) to UR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ben-Shlomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Shlomo, R., Neufeld, E., Berger, D. et al. The dynamic of the t-haplotype in wild populations of the house mouse Mus musculus domesticus in Israel. Mamm Genome 18, 164–172 (2007). https://doi.org/10.1007/s00335-007-9001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-007-9001-0

Keywords

Navigation