Skip to main content
Log in

Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The bovine PRKAG3 gene encodes the AMPK γ3 subunit, one isoform of the regulatory γ subunit of the AMP-activated protein kinase (AMPK). The AMPK plays a major role in the regulation of energy metabolism and mutations affecting the genes encoding the γ subunits have been shown to influence AMPK activity. The γ3 subunit is involved in the regulation of AMPK activity in skeletal muscle and strongly inflences glycogen metabolism. Glycogen content in muscle is correlated to meat quality in livestock because it influences postmortem maturation process and ultimate pH. Naturally occurring mutations in the porcine PRKAG3 gene highly affect meat quality by influencing glycogen content before slaughter. We present the characterization of the bovine PRKAG3 gene and a polymorphism analysis in three cattle breeds. Thirty-two SNPs were identified among which 13 are in the coding region, one is in the 3′ UTR, and 18 are in the introns. Five of them change an amino acid in the PRKAG3 protein sequence. Allelic frequencies were determined in the three breeds considered, and mutant alleles affecting the coding sequence are found at a very low frequency. Alternative splicing sites were identified at two positions of the gene, introducing heterogeneity in the population of proteins translated from the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amarger V, Erlandsson R, Pielberg G, Jeon JT, Andersson L (2003) Comparative sequence analysis of the PRKAG3 region between human and pig: evolution of repetitive sequences and potential new exons. Cytogenet Genome Res 102: 163–172

    Article  CAS  PubMed  Google Scholar 

  • Andersson L (2003) Identification and characterization of AMPK gamma3 mutations in the pig. Biochem Soc Trans 31: 232–235

    CAS  PubMed  Google Scholar 

  • Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5: 202–212

    Article  CAS  PubMed  Google Scholar 

  • Arad M, Benson DW, Perez-Atayde AR, McKenna WJ, Sparks EA, et al. (2002) Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109: 357–362

    Article  CAS  PubMed  Google Scholar 

  • Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, et al. (2004) The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279: 38441–38447

    CAS  PubMed  Google Scholar 

  • Blair E, Redwood C, Ashrafian H, Oliveira M, Broxholme J, et al. (2001) Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet 10: 1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, et al. (1999) Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet 22: 231–238

    CAS  PubMed  Google Scholar 

  • Carling D (2004) The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci 29: 18–24

    Article  CAS  PubMed  Google Scholar 

  • Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3): 659–669

    CAS  PubMed  Google Scholar 

  • Ciobanu D, Bastiaansen J, Malek M, Helm J, Woollard J, et al. (2001) Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159: 1151–1162

    CAS  PubMed  Google Scholar 

  • Du M, Shen QW, Zhu MJ (2005) Role of beta-adrenoceptor signaling and AMP-activated protein kinase in glycolysis of postmortem skeletal muscle. J Agric Food Chem 53: 3235–3239

    CAS  PubMed  Google Scholar 

  • Eggen A, Gautier M, Billaut A, Petit E, Hayes H, et al. (2001) Construction and characterization of a bovine BAC library with four genome-equivalent coverage. Genet Sel Evol 33: 543–548

    Article  CAS  PubMed  Google Scholar 

  • Ferre P, Azzout-Marniche D, Foufelle F (2003) AMP-activated protein kinase and hepatic genes involved in glucose metabolism. Biochem Soc Trans 31: 220–223

    CAS  PubMed  Google Scholar 

  • Gollob MH, Green MS, Tang AS, Gollob T, Karibe A, et al. (2001) Identification of a gene responsible for familial Wolff–Parkinson–White syndrome. N Engl J Med 344: 1823–1831

    Article  CAS  PubMed  Google Scholar 

  • Halushka MK, Fan JB, Bentley K, Hsie L, Shen N, et al. (1999) Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 22: 239–247

    CAS  PubMed  Google Scholar 

  • Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 546: 113–120

    Article  CAS  PubMed  Google Scholar 

  • Heaton MP, Grosse WM, Kappes SM, Keele JW, Chitko-McKown CG, et al. (2001) Estimation of DNA sequence diversity in bovine cytokine genes. Mamm Genome 12: 32–37

    CAS  PubMed  Google Scholar 

  • Immonen K, Ruusunen M, Hissa K, Puolanne E (2000) Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Sci 55: 25–31

    CAS  Google Scholar 

  • Kemp BE, Mitchelhill KI, Stapleton D, Michell BJ, Chen ZP, et al. (1999) Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 24: 22–25

    Article  CAS  PubMed  Google Scholar 

  • Konfortov BA, Licence VE, Miller JR (1999) Re-sequencing of DNA from a diverse panel of cattle reveals a high level of polymorphism in both intron and exon. Mamm Genome 10: 1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14: 273–282

    Article  CAS  PubMed  Google Scholar 

  • Marin A, Bertranpetit J, Oliver JL, Medina JR (1989) Variation in G + C-content and codon choice: differences among synonymous codon groups in vertebrate genes. Nucleic Acids Res 17: 6181–6189

    CAS  PubMed  Google Scholar 

  • McKay SD, White SN, Kata SR, Loan R, Womack JE (2003) The bovine 5′ AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm Genome 14: 853–858

    CAS  PubMed  Google Scholar 

  • Milan D, Jeon JT, Looft C, Amarger V, Robic A, et al. (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288: 1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Nelson MR, Marnellos G, Kammerer S, Hoyal CR, Shi MM, et al. (2004) Large-scale validation of single nucleotide polymorphisms in gene regions. Genome Res 14: 1664–1668

    Article  CAS  PubMed  Google Scholar 

  • Pickering J, Bamford A, Godbole V, Briggs J, Scozzafava G, et al. (2002) Integration of DNA ligation and rolling circle amplification for the homogeneous, end-point detection of single nucleotide polymorphisms. Nucleic Acids Res 30: e60

    Article  PubMed  Google Scholar 

  • Porter TD (1995) Correlation between codon usage, regional genomic nucleotide composition, and amino acid composition in the cytochrome P-450 gene superfamily. Biochim Biophys Acta 1261: 394–400

    PubMed  Google Scholar 

  • Rouzaud F, Martin J, Gallet PF, Delourme D, (2000) A first genotyping assay of French cattle breeds based on a new allele of the extension gene encoding the melanocortin-1 receptor (Mc1r). Genet Sel Evol 32: 511–520

    Article  CAS  PubMed  Google Scholar 

  • Scott JW, Hawley SA, Green KA, Anis M, Stewart G, et al. (2004) CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations. J Clin Invest 113: 274–284

    Article  CAS  PubMed  Google Scholar 

  • Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, et al. (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611–614

    Article  CAS  PubMed  Google Scholar 

  • Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, et al. (2001) Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489–493

    Article  CAS  PubMed  Google Scholar 

  • Thornton C, Snowden MA, Carling D (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273: 12443–12450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all the people who provided DNA and tissue samples. The Charolais and Limousin individuals were collected as a part of the Gemqual European Project (QLRT-CT2000-00147). Matthieu Roux was supported by a INRA/Region Limousin grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Amarger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, M., Nizou, A., Forestier, L. et al. Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts. Mamm Genome 17, 83–92 (2006). https://doi.org/10.1007/s00335-005-0093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-005-0093-0

Keywords

Navigation