Skip to main content

Advertisement

Log in

Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover

  • Editorial
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Andersen ST (1970) The relative pollen productivity and pollen representation of North European trees and correction factors for tree pollen spectra. Danmarks Geologiske Undersøgelse, Række II, p 96

    Google Scholar 

  • Anderson NJ, Bugmann H, Dearing JA, Gaillard M-J (2006) Linking palaeoenvironmental data and models to understand the past and to predict the future. Trends Ecol Evol 21:696–704

    Article  Google Scholar 

  • Berglund BE, Emanuelsson U, Persson S, Persson T (1986) Pollen/vegetation relationships in grazed and mowed plant communities of South Sweden. In: Behre KE (ed) Anthropogenic indicators in pollen diagrams. Balkema, Rotterdam, pp 37–52

    Google Scholar 

  • Birks HJB (1986) Late-quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to northwest Europe. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 3–65

    Google Scholar 

  • Brovkin V, Claussen M, Driesschaert E, Fichefet T, Kicklighter D, Loutre MF, Matthews HD, Ramankutty N, Schaeffer M, Sokolov A (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Clim Dyn 26:587–600

    Article  Google Scholar 

  • Bunting MJ, Middleton R (2005) Modelling pollen dispersal and deposition using HUMPOL software, including simulating windroses and irregular lakes. Rev Palaeobot Palynol 134:185–196

    Article  Google Scholar 

  • Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912

    Google Scholar 

  • Davis MB, Deevey ES Jr (1964) Pollen accumulation rates: Estimates from late-glacial sediment of Rogers Lake. Science 145:1293–1295

    Article  Google Scholar 

  • Dearing JA (2006) Climate-human-environment interactions: resolving our past. Clim Past 2:187–203

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson RE, Haugustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, a Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Gaillard MJ (2007) Archaeological applications. In: Elias SA (ed) Encyclopedia of quaternary science. Elsevier, Amsterdam, pp 2570–2595

    Google Scholar 

  • Gaillard MJ, Hicks S, Ritchie JC (eds) (1994) Modern pollen rain and fossil pollen spectra. Rev Palaeobot Palynol 82, Elsevier, Amsterdam

  • Hellman S, Gaillard M-J, Broström A, Sugita S (2008) The REVEALS model, a new tool to estimate past regional plant abundance from data in large lakes: validation in southern Sweden. J Quatern Sci 23:1–22

    Article  Google Scholar 

  • Klein Goldewijk K (2001) Estimating global land use change over the past 300 years: the HYDE database. Global Biogeochem Cycles 15:417–434

    Article  Google Scholar 

  • Klein Goldewijk K, Ramankutty N (2004) Land cover change over the last three centuries due to human activities: the availability of new global data sets. Geojournal 61:335–344

    Article  Google Scholar 

  • Leemans R, Tompson RS, Oldfield F (2000) BIOME 300—a joint initiative of LUCC and PAGES. PAGES Newsletter 2000–3:32

    Google Scholar 

  • Lichti-Federovich S, Ritchie JC (1968) Recent pollen assemblages from the Western Interior of Canada. Rev Palaeobot Palynol 7:297–344

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 747–845

    Google Scholar 

  • Middleton R, Bunting MJ (2004) Mosaic v1.1: landscape scenario creation software for simulation of pollen dispersal and deposition. Rev Palaeobot Palynol 132:61–66

    Google Scholar 

  • Oldfield F, Dearing JA, Gaillard M-J, Bugmann H (2000) Ecosystem processes and human dimensions–the scope and future of HITE (human impacts on terrestrial ecosystems). PAGES Newsletter 3:21–23

    Google Scholar 

  • Parsons RW, Prentice IC (1981) Statistical approaches to R-values and the pollen-vegetational relationship. Rev Palaeobot Palynol 32:127–152

    Article  Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  Google Scholar 

  • Ritchie JC, Yarranton GA (1978) The Late-Quaternary history of the Boreal Forest of Central Canada, based on standard pollen stratigraphy and principal component analysis. J Ecol 66:199–212

    Article  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293

    Article  Google Scholar 

  • Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophysics 45:1–37

    Article  Google Scholar 

  • Soepboer W, Sugita S, Lotter A (2008) Modelling regional vegetation changes on the Swiss Plateau during the past two millennia. Quatern Sci Rev

  • Sugita S (1993) A model of pollen source area for an entire lake surface. Quatern Res 39:239–244

    Article  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Sugita S (2007a) Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation. Holocene 17:229–241

    Article  Google Scholar 

  • Sugita S (2007b) Theory of quantitative reconstruction of vegetation. II. All You Need Is LOVE. Holocene 17:243–257

    Article  Google Scholar 

  • Sugita S, Gaillard M-J, Broström A (1999) Landscape openness and pollen records: a simulation approach. Holocene 9:409–421

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-José Gaillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillard, MJ., Sugita, S., Bunting, J. et al. Human impact on terrestrial ecosystems, pollen calibration and quantitative reconstruction of past land-cover. Veget Hist Archaeobot 17, 415–418 (2008). https://doi.org/10.1007/s00334-008-0170-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-008-0170-x

Navigation