Skip to main content

Advertisement

Log in

Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T

  • Breast
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The objective of our study was to evaluate the clinical application of bilateral high spatial and temporal resolution dynamic contrast-enhanced magnetic resonance imaging (HR DCE-MRI) of the breast at 7 T.

Methods

Following institutional review board approval 23 patients with a breast lesion (BIRADS 0, 4–5) were included in our prospective study. All patients underwent bilateral HR DCE-MRI of the breast at 7 T (spatial resolution of 0.7 mm3 voxel size, temporal resolution of 14 s). Two experienced readers (r1, r2) and one less experienced reader (r3) independently assessed lesions according to BI-RADS®. Image quality, lesion conspicuity and artefacts were graded from 1 to 5. Sensitivity, specificity and diagnostic accuracy were assessed using histopathology as the standard of reference.

Results

HR DCE-MRI at 7 T revealed 29 lesions in 23 patients (sensitivity 100 % (19/19); specificity of 90 % (9/10)) resulting in a diagnostic accuracy of 96.6 % (28/29) with an AUC of 0.95. Overall image quality was excellent in the majority of cases (27/29) and examinations were not hampered by artefacts. There was excellent inter-reader agreement for diagnosis and image quality parameters (κ = 0.89–1).

Conclusion

Bilateral HR DCE-MRI of the breast at 7 T is feasible with excellent image quality in clinical practice and allows accurate breast cancer diagnosis.

Key points

• Dynamic contrast-enhanced 7-T MRI is being developed in several centres.

• Bilateral high resolution DCE-MRI of the breast at 7 T is clinically applicable.

• 7-T HR DCE-MRI of the breast provides excellent image quality.

• 7-T HR DCE-MRI should detect breast cancer with high diagnostic accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sardanelli F, Boetes C, Borisch B et al (2010) Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer 46:1296–1316

    Article  PubMed  Google Scholar 

  2. Turnbull LW (2009) Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed 22:28–39

    Article  PubMed  Google Scholar 

  3. Orel SG, Schnall MD (2001) MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220:13–30

    Article  CAS  PubMed  Google Scholar 

  4. Schnall M, Orel S (2006) Breast MR imaging in the diagnostic setting. Magn Reson Imaging Clin N Am 14:329–337, vi

    Article  PubMed  Google Scholar 

  5. Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378:1804–1811

    Article  PubMed  Google Scholar 

  6. DeMartini W, Lehman C (2008) A review of current evidence-based clinical applications for breast magnetic resonance imaging. Top Magn Reson Imaging 19:143–150

    Article  PubMed  Google Scholar 

  7. Kinkel K, Helbich TH, Esserman LJ et al (2000) Dynamic high-spatial-resolution MR imaging of suspicious breast lesions: diagnostic criteria and interobserver variability. AJR Am J Roentgenol 175:35–43

    Article  CAS  PubMed  Google Scholar 

  8. Liberman L, Morris EA, Lee MJ et al (2002) Breast lesions detected on MR imaging: features and positive predictive value. AJR Am J Roentgenol 179:171–178

    Article  PubMed  Google Scholar 

  9. Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236:789–800

    Article  PubMed  Google Scholar 

  10. Baltzer PA, Benndorf M, Dietzel M, Gajda M, Runnebaum IB, Kaiser WA (2010) False-positive findings at contrast-enhanced breast MRI: a BI-RADS descriptor study. AJR Am J Roentgenol 194:1658–1663

    Article  PubMed  Google Scholar 

  11. Dietzel M, Baltzer PA, Vag T et al (2010) Differential diagnosis of breast lesions 5 mm or less: is there a role for magnetic resonance imaging? J Comput Assist Tomogr 34:456–464

    Article  PubMed  Google Scholar 

  12. Gutierrez RL, DeMartini WB, Eby PR, Kurland BF, Peacock S, Lehman CD (2009) BI-RADS lesion characteristics predict likelihood of malignancy in breast MRI for masses but not for nonmasslike enhancement. AJR Am J Roentgenol 193:994–1000

    Article  PubMed  Google Scholar 

  13. Pinker K, Grabner G, Bogner W et al (2009) A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results. Invest Radiol 44:553–558

    Article  PubMed  Google Scholar 

  14. Pinker-Domenig K, Bogner W, Gruber S et al (2012) High resolution MRI of the breast at 3 T: which BI-RADS(R) descriptors are most strongly associated with the diagnosis of breast cancer? Eur Radiol 22:322–330

    Article  CAS  PubMed  Google Scholar 

  15. Elsamaloty H, Elzawawi MS, Mohammad S, Herial N (2009) Increasing accuracy of detection of breast cancer with 3-T MRI. AJR Am J Roentgenol 192:1142–1148

    Article  PubMed  Google Scholar 

  16. Schmitz AC, Peters NH, Veldhuis WB et al (2008) Contrast-enhanced 3.0-T breast MRI for characterization of breast lesions: increased specificity by using vascular maps. Eur Radiol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  17. Kuhl CK, Jost P, Morakkabati N, Zivanovic O, Schild HH, Gieseke J (2006) Contrast-enhanced MR imaging of the breast at 3.0 and 1.5 T in the same patients: Initial experience. Radiology 239:666–676

    Article  PubMed  Google Scholar 

  18. Rahbar H, Partridge SC, DeMartini WB, Thursten B, Lehman CD (2013) Clinical and technical considerations for high quality breast MRI at 3 Tesla. J Magn Reson Imaging 37:778–790

    Article  PubMed  Google Scholar 

  19. van de Bank BL, Voogt IJ, Italiaander M et al (2012) Ultra high spatial and temporal resolution breast imaging at 7 T. NMR Biomed. doi:10.1002/nbm.2868

    Google Scholar 

  20. Korteweg MA, Veldhuis WB, Visser F et al (2011) Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and (1)H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Invest Radiol 46:370–376

    Article  CAS  PubMed  Google Scholar 

  21. Brown R, Storey P, Geppert C et al (2013) Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla. Eur Radiol 23:2969–2978

    Article  PubMed  Google Scholar 

  22. Stehouwer BL, Klomp DW, van den Bosch MA et al (2013) Dynamic contrast-enhanced and ultra-high-resolution breast MRI at 7.0 Tesla. Eur Radiol 23:2961–2968

    Article  PubMed  Google Scholar 

  23. Wijnen JP, van der Kemp WJ, Luttje MP, Korteweg MA, Luijten PR, Klomp DW (2011) Quantitative (31) P magnetic resonance spectroscopy of the human breast at 7 T. Magn Reson Med 68:339–348

    Article  PubMed  Google Scholar 

  24. Klomp DW, van de Bank BL, Raaijmakers A et al (2011) 31P MRSI and 1H MRS at 7 T: initial results in human breast cancer. NMR Biomed 24:1337–1342

    Article  PubMed  Google Scholar 

  25. Umutlu L, Maderwald S, Kraff O et al (2010) Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial. Acad Radiol 17:1050–1056

    Article  PubMed  Google Scholar 

  26. Stehouwer BL, Klomp DW, Korteweg MA et al (2013) 7 T versus 3 T contrast-enhanced breast magnetic resonance imaging of invasive ductulolobular carcinoma: first clinical experience. Magn Reson Imaging 31:613–617

    Article  PubMed  Google Scholar 

  27. Baltzer PA, Dietzel M, Vag T et al (2011) Clinical MR mammography: impact of hormonal status on background enhancement and diagnostic accuracy. RöFo 183:441–447

    CAS  PubMed  Google Scholar 

  28. DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD (2012) Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol 198:W373–W380

    Article  PubMed  Google Scholar 

  29. Han BK, Schnall MD, Orel SG, Rosen M (2008) Outcome of MRI-guided breast biopsy. AJR Am J Roentgenol 191:1798–1804

    Article  PubMed  Google Scholar 

  30. Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD (2008) Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol 26:386–391

    Article  PubMed  Google Scholar 

  31. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110

    Article  CAS  PubMed  Google Scholar 

  32. Insko EK, Connick TJ, Schnall MD, Orel SG (1997) Multicoil array for high resolution imaging of the breast. Magn Res Med 37:778–784

    Article  CAS  Google Scholar 

  33. Solomon B, Orel S, Reynolds C, Schnall M (1998) Delayed development of enhancement in fat necrosis after breast conservation therapy: a potential pitfall of MR imaging of the breast. AJR Am J Roentgenol 170:966–968

    Article  CAS  PubMed  Google Scholar 

  34. Schueller G, Jaromi S, Ponhold L et al (2008) US-guided 14-gauge core-needle breast biopsy: results of a validation study in 1352 cases. Radiology 248:406–413

    Article  PubMed  Google Scholar 

  35. Degnim AC, King TA (2013) Surgical management of high-risk breast lesions. Surg Clin North Am 93:329–340

    Article  PubMed  Google Scholar 

  36. Mann RM, Veltman J, Huisman H, Boetes C (2011) Comparison of enhancement characteristics between invasive lobular carcinoma and invasive ductal carcinoma. J Magn Reson Imaging 34:293–300

    Article  PubMed  Google Scholar 

  37. Mann RM, Loo CE, Wobbes T et al (2010) The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res Treat 119:415–422

    Article  CAS  PubMed  Google Scholar 

  38. Weinstein SP, Orel SG, Heller R et al (2001) MR imaging of the breast in patients with invasive lobular carcinoma. AJR Am J Roentgenol 176:399–406

    Article  CAS  PubMed  Google Scholar 

  39. Kuhl CK, Schrading S, Bieling HB et al (2007) MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet 370:485–492

    Article  PubMed  Google Scholar 

  40. Lehman CD (2010) Magnetic resonance imaging in the evaluation of ductal carcinoma in situ. J Natl Cancer Inst Monogr 2010:150–151

    Article  PubMed  Google Scholar 

  41. Mann RM, Kuhl CK, Kinkel K, Boetes C (2008) Breast MRI: guidelines from the European Society of Breast Imaging. Eur Radiol 18:1307–1318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Baltzer PA, Dietzel M, Kaiser WA (2011) Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy. J Comput Assist Tomogr 35:361–366

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by the Austrian Nationalbank ‘Jubiläumsfond’ Project 5082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. H. Helbich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinker, K., Bogner, W., Baltzer, P. et al. Clinical application of bilateral high temporal and spatial resolution dynamic contrast-enhanced magnetic resonance imaging of the breast at 7 T. Eur Radiol 24, 913–920 (2014). https://doi.org/10.1007/s00330-013-3075-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3075-8

Keywords

Navigation