Skip to main content
Log in

Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention

  • Hepatobiliary-Pancreas
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate if tracer kinetic modelling of low temporal resolution dynamic contrast-enhanced (DCE) MRI with Gd-EOB-DTPA could replace technetium-99 m galactosyl human serum albumin (GSA) single positron emission computed tomography (SPECT) and indocyanine green (ICG) retention for the measurement of liver functional reserve.

Methods

Twenty eight patients awaiting liver resection for various cancers were included in this retrospective study that was approved by the institutional review board. The Gd-EOB-DTPA MRI sequence acquired five images: unenhanced, double arterial phase, portal phase, and 4 min after injection. Intracellular contrast uptake rate (UR) and extracellular volume (Ve) were calculated from DCE-MRI, along with the ratio of GSA radioactivity of liver to heart-plus-liver and per cent of cumulative uptake from 15–16 min (LHL15 and LU15, respectively) from GSA-scintigraphy. ICG retention at 15 min, Child–Pugh cirrhosis score (CPS) and postoperative Inuyama fibrosis criteria were also recorded. Statistical analysis was with Spearman rank correlation analysis.

Results

Comparing MRI parameters with the reference methods, significant correlations were obtained for UR and LHL15, LU15, ICG15 (all 0.4–0.6, P < 0.05); UR and CPS (-0.64, P < 0.001); Ve and Inuyama (0.44, P < 0.05).

Conclusion

Measures of liver function obtained by routine Gd-EOB-DTPA DCE-MRI with tracer kinetic modelling may provide a suitable method for the evaluation of liver functional reserve.

Key points

• Magnetic resonance imaging (MRI) provides new methods of measuring hepatic functional reserve.

• DCE-MRI with Gd-EOB-DTPA offers the possibility of replacing scintigraphy.

• The analysis method can be used for preoperative liver function evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lau H, Man K, Fan ST, Yu WC, Lo CM, Wong J (1997) Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. Br J Surg 84:1255–1259

    Article  CAS  PubMed  Google Scholar 

  2. Manizate F, Hiotis SP, Labow D, Roayaie S, Schwartz M (2010) Liver functional reserve estimation: state of the art and relevance for local treatments: the Western perspective. J Hepatobiliary Pancreat Sci 17:385–388

    Article  PubMed  Google Scholar 

  3. Kamath PS, Wiesner RH, Malinchoc M et al (2001) A model to predict survival in patients with end-stage liver disease. Hepatology 33:464–470

    Article  CAS  PubMed  Google Scholar 

  4. Stadalnik RC, Vera DR, Woodle ES et al (1985) Technetium-99m NGA functional hepatic imaging: preliminary clinical experience. J Nucl Med 26:1233–1242

    CAS  PubMed  Google Scholar 

  5. Vera DR, Krohn KA, Scheibe PO, Stadalnik RC (1985) Identifiability analysis of an in vivo receptor-binding radiopharmacokinetic system. IEEE Trans Biomed Eng 32:312–322

    Article  CAS  PubMed  Google Scholar 

  6. Vera DR, Krohn KA, Stadalnik RC, Scheibe PO (1984) Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocytes. Radiology 151:191–196

    CAS  PubMed  Google Scholar 

  7. Vera DR, Krohn KA, Stadalnik RC, Scheibe PO (1984) Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding. J Nucl Med 25:779–787

    CAS  PubMed  Google Scholar 

  8. Vera DR, Stadalnik RC, Krohn KA (1985) Technetium-99m galactosyl-neoglycoalbumin: preparation and preclinical studies. J Nucl Med 26:1157–1167

    CAS  PubMed  Google Scholar 

  9. Annet L, Materne R, Danse E, Jamart J, Horsmans Y, Van Beers BE (2003) Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 229:409–414

    Article  PubMed  Google Scholar 

  10. Baxter S, Wang ZJ, Joe BN, Qayyum A, Taouli B, Yeh BM (2009) Timing bolus dynamic contrast-enhanced (DCE) MRI assessment of hepatic perfusion: initial experience. J Magn Reson Imaging 29:1317–1322

    Article  PubMed  Google Scholar 

  11. Blomley MJ, Coulden R, Dawson P et al (1995) Liver perfusion studied with ultrafast CT. J Comput Assist Tomogr 19:424–433

    Article  CAS  PubMed  Google Scholar 

  12. Hagiwara M, Rusinek H, Lee VS et al (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging–initial experience. Radiology 246:926–934

    Article  PubMed  Google Scholar 

  13. Koh TS, Thng CH, Hartono S et al (2009) Dynamic contrast-enhanced CT imaging of hepatocellular carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol with tracer kinetics modeling. Eur Radiol 19:1184–1196

    Article  PubMed  Google Scholar 

  14. Miles KA, Hayball MP, Dixon AK (1993) Functional images of hepatic perfusion obtained with dynamic CT. Radiology 188:405–411

    CAS  PubMed  Google Scholar 

  15. Ryeom HK, Kim SH, Kim JY et al (2004) Quantitative evaluation of liver function with MRI using Gd-EOB-DTPA. Korean J Radiol 5:231–239

    Article  PubMed Central  PubMed  Google Scholar 

  16. Thng CH, Koh TS, Collins DJ, Koh DM (2010) Perfusion magnetic resonance imaging of the liver. World J Gastroenterol 16:1598–1609

    Article  PubMed Central  PubMed  Google Scholar 

  17. Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 176:667–673

    Article  PubMed  Google Scholar 

  18. Godfrey EM, Mannelli L, Griffin N, Lomas DJ (2013) Magnetic resonance elastography in the diagnosis of hepatic fibrosis. Semin Ultrasound CT MR 34:81–88

    Article  PubMed  Google Scholar 

  19. Herold C, Reck T, Fischler P et al (2002) Prognosis of a large cohort of patients with hepatocellular carcinoma in a single European centre. Liver 22:23–28

    Article  PubMed  Google Scholar 

  20. Nagasue N, Kohno H, Chang YC et al (1993) Liver resection for hepatocellular carcinoma. Results of 229 consecutive patients during 11 years. Ann Surg 217:375–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Okamoto E, Kyo A, Yamanaka N, Tanaka N, Kuwata K (1984) Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery 95:586–592

    CAS  PubMed  Google Scholar 

  22. Truant S, Oberlin O, Sergent G et al (2007) Remnant liver volume to body weight ratio > or =0.5 %: a new cut-off to estimate postoperative risks after extended resection in noncirrhotic liver. J Am Coll Surg 204:22–33

    Article  PubMed  Google Scholar 

  23. Iimuro Y, Kashiwagi T, Yamanaka J et al (2010) Preoperative estimation of asialoglycoprotein receptor expression in the remnant liver from CT/99mTc-GSA SPECT fusion images correlates well with postoperative liver function parameters. J Hepatobiliary Pancreat Sci 17:673–681

    Article  PubMed  Google Scholar 

  24. Kaibori M, Ha-Kawa SK, Maehara M et al (2011) Usefulness of Tc-99m-GSA scintigraphy for liver surgery. Ann Nucl Med 25:593–602

    Article  PubMed  Google Scholar 

  25. Ashwell G, Morell AG (1974) The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 41:99–128

    CAS  PubMed  Google Scholar 

  26. Kashiwagi T, Yutani K, Fukuchi M et al (2002) Correction of nonuniform attenuation and image fusion in SPECT imaging by means of separate X-ray CT. Ann Nucl Med 16:255–261

    Article  PubMed  Google Scholar 

  27. Ichikawa T, Saito K, Yoshioka N et al (2010) Detection and characterization of focal liver lesions: a Japanese phase III, multicenter comparison between gadoxetic acid disodium-enhanced magnetic resonance imaging and contrast-enhanced computed tomography predominantly in patients with hepatocellular carcinoma and chronic liver disease. Invest Radiol 45:133–141

    Article  PubMed  Google Scholar 

  28. Vogl TJ, Kummel S, Hammerstingl R et al (1996) Liver tumors: comparison of MR imaging with Gd-EOB-DTPA and Gd-DTPA. Radiology 200:59–67

    CAS  PubMed  Google Scholar 

  29. Clement O, Siauve N, Lewin M, de Kerviler E, Cuenod CA, Frija G (1998) Contrast agents in magnetic resonance imaging of the liver: present and future. Biomed Pharmacother 52:51–58

    Article  CAS  PubMed  Google Scholar 

  30. Nilsson H, Nordell A, Vargas R, Douglas L, Jonas E, Blomqvist L (2009) Assessment of hepatic extraction fraction and input relative blood flow using dynamic hepatocyte-specific contrast-enhanced MRI. J Magn Reson Imaging 29:1323–1331

    Article  PubMed  Google Scholar 

  31. Saito K, Ledsam J, Sourbron S et al (2012) Assessing liver function using dynamic Gd-EOB-DTPA-enhanced MRI with a standard 5-phase imaging protocol. J Magn Reson Imaging 37:1109–1114

    Article  PubMed  Google Scholar 

  32. Sourbron S, Sommer WH, Reiser MF, Zech CJ (2012) Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology 263:874–883

    Article  PubMed  Google Scholar 

  33. Nilsson H, Blomqvist L, Douglas L, Nordell A, Jonas E (2010) Assessment of liver function in primary biliary cirrhosis using Gd-EOB-DTPA-enhanced liver MRI. HPB (Oxford) 12:567–576

    Article  Google Scholar 

  34. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R (1973) Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 60:646–649

    Article  CAS  PubMed  Google Scholar 

  35. Ichida FTT, Omata M, Ichida T, Inoue K, Kamimura T, Yamada G, Hino K, Yokosuka O, Suzuki H (1996) New Inuyama classification; new criteria for histological assessment of chronic hepatitis. Int Hepatol Commun 6:112–119

    Article  Google Scholar 

  36. Watanabe H, Kanematsu M, Goshima S et al (2011) Staging hepatic fibrosis: comparison of gadoxetate disodium-enhanced and diffusion-weighted MR imaging–preliminary observations. Radiology 259:142–150

    Article  PubMed  Google Scholar 

  37. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  38. Pedersen M, Shi Y, Anderson P et al (2004) Quantitation of differential renal blood flow and renal function using dynamic contrast-enhanced MRI in rats. Magn Reson Med 51:510–517

    Article  PubMed  Google Scholar 

  39. Ha-Kawa SK, Tanaka Y, Hasebe S et al (1997) Compartmental analysis of asialoglycoprotein receptor scintigraphy for quantitative measurement of liver function: a multicentre study. Eur J Nucl Med 24:130–137

    Article  CAS  PubMed  Google Scholar 

  40. Koizumi K, Uchiyama G, Arai T, Ainoda T, Yoda Y (1992) A new liver functional study using Tc-99m DTPA-galactosyl human serum albumin: evaluation of the validity of several functional parameters. Ann Nucl Med 6:83–87

    Article  CAS  PubMed  Google Scholar 

  41. Makuuchi M, Kosuge T, Takayama T et al (1993) Surgery for small liver cancers. Semin Surg Oncol 9:298–304

    Article  CAS  PubMed  Google Scholar 

  42. Burgess JB, Baenziger JU, Brown WR (1992) Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis. Hepatology 15:702–706

    Article  CAS  PubMed  Google Scholar 

  43. Hwang EH, Taki J, Shuke N et al (1999) Preoperative assessment of residual hepatic functional reserve using 99mTc-DTPA-galactosyl-human serum albumin dynamic SPECT. J Nucl Med 40:1644–1651

    CAS  PubMed  Google Scholar 

  44. Kwon AH, Ha-Kawa SK, Uetsuji S, Inoue T, Matsui Y, Kamiyama Y (1997) Preoperative determination of the surgical procedure for hepatectomy using technetium-99m-galactosyl human serum albumin (99mTc-GSA) liver scintigraphy. Hepatology 25:426–429

    Article  CAS  PubMed  Google Scholar 

  45. Kwon AH, Matsui Y, Kaibori M, Ha-Kawa SK (2006) Preoperative regional maximal removal rate of technetium-99m-galactosyl human serum albumin (GSA-Rmax) is useful for judging the safety of hepatic resection. Surgery 140:379–386

    Article  PubMed  Google Scholar 

  46. Mastai R, Laganiere S, Wanless IR, Giroux L, Rocheleau B, Huet PM (1996) Hepatic sinusoidal fibrosis induced by cholesterol and stilbestrol in the rabbit: 2. Hemodynamic and drug disposition studies. Hepatology 24:865–870

    Article  CAS  PubMed  Google Scholar 

  47. Iguchi T, Sato S, Kouno Y et al (2003) Comparison of Tc-99m-GSA scintigraphy with hepatic fibrosis and regeneration in patients with hepatectomy. Ann Nucl Med 17:227–233

    Article  PubMed  Google Scholar 

  48. Van Beers BE, Materne R, Annet L et al (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699

    Article  PubMed  Google Scholar 

  49. Nguyen-Khac E, Lobry C, Chatelain D et al (2013) A reappraisal of chemotherapy-induced liver injury in colorectal liver metastases before the era of antiangiogenics. Int J Hepatol 2013:314868

    PubMed Central  PubMed  Google Scholar 

  50. Shaib YH, El-Serag HB, Nooka AK et al (2007) Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a hospital-based case-control study. Am J Gastroenterol 102:1016–1021

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Great Britain Sasakawa Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, K., Ledsam, J., Sourbron, S. et al. Measuring hepatic functional reserve using low temporal resolution Gd-EOB-DTPA dynamic contrast-enhanced MRI: a preliminary study comparing galactosyl human serum albumin scintigraphy with indocyanine green retention. Eur Radiol 24, 112–119 (2014). https://doi.org/10.1007/s00330-013-2983-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2983-y

Keywords

Navigation