Skip to main content

Advertisement

Log in

Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Microorganisms have a crucial role to play in the cycling of nutrients within glacial environments. These systems are often nutrient-limited, and so biogeochemical reactions, which ensure the availability of nutrients for microbial communities, are critical for the maintenance of these systems. This study uses molecular biology to characterise the supraglacial cryoconite microbial communities that are capable of cycling carbon and nitrogen in a range of glacial environments. Organisms with the potential to photosynthesise were identified, including Cyanobacteria, Actinobacteria, Betaproteobacteria, Stramenopiles and Haptophyceae. Organisms with the potential to perform nitrification and denitrification processes were also identified and featured Betaproteobacteria, Alphaproteobacteria, Thaumarchaeota and Cyanobacteria. While it is unlikely that the chemical and physical parameters of the supraglacial environment will facilitate optimal rates of all of the nitrogen-related biogeochemical processes, the transport of these cryoconite communities to downstream locations, where more favourable conditions may prevail, will perhaps provide a valuable inoculation of microorganisms with the genetic potential to catalyse these reactions elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Bio 215:403–410

    CAS  Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Bio 15:955–960

    Article  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Env Microbiol 72:5734–5741

    Article  CAS  Google Scholar 

  • Barker J, Sharp M, Fitzsimons S, Turner R (2006) Abundance and dynamics of dissolved organic carbon in glacier systems. Arct Antarct Alp Res 38:163–172

    Article  Google Scholar 

  • Bothe H, Ferguson SJ, Newton WE (2007) Biology of the nitrogen cycle. Elsevier, Oxford

    Google Scholar 

  • Boyd ES, Lange RK, Mitchell AC, Havig JR, Hamilton TL, Lafrenière MJ, Shock EL, Peters JW, Skidmore M (2011) Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl Environ Microbiol 77:4778–4787

    Article  PubMed  CAS  Google Scholar 

  • Braker G, Tiedje JM (2003) Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Appl Environ Microbiol 69:3476–3483

    Article  PubMed  CAS  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    PubMed  CAS  Google Scholar 

  • Buell CR, Joardar V, Lindeberg M, Selengut J, Paulsen IT, Gwinn ML, Dodson RJ, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Daugherty S, Brinkac L, Beanan MJ, Haft DH, Nelson WC, Davidsen T, Zafar N, Zhou L, Liu J, Yuan Q, Khouri H, Fedorova N, Tran B, Russell D, Berry K, Utterback T, Van Aken SE, Feldblyum TV, D’Ascenzo M, Deng WL, Ramos AR, Alfano JR, Cartinhour S, Chatterjee AK, Delaney TP, Lazarowitz SG, Martin GB, Schneider DJ, Tang X, Bender CL, White O, Fraser CM, Collmer A (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 100:10181–10186

    Article  PubMed  CAS  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2012) Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. Appl Environ Microbiol. doi:10.1111/j.1574-6941.2011.01277.x

    Google Scholar 

  • Canfield DE, Green WJ (1985) The cycling of nutrients in a closed-basin Antarctic lake: Lake Vanda. Biogeochem 1:233–256

    Article  CAS  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    PubMed  CAS  Google Scholar 

  • Clausen HB, Stampe M, Hammer CU, Hvidberg CS, Dahl-Jensen D, Steffensen JP (2001) Glaciological and chemical studies on ice cores from Hans Tausen Iskappe, Greenland. Meddelelser om Grønland Geosci 39:123–149

    Google Scholar 

  • Darwin A, Hussain H, Griffiths L, Sambongi Y, Busby S, Cole J (1993) Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol 9:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Deiglmayr K, Philippot L, Tscherko D, Kandeler E (2006) Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps. Environ Microbiol 8:1600–1612

    Article  PubMed  CAS  Google Scholar 

  • Dong LF, Smith CJ, Papaspyrou S, Stott A, Osborn AM, Nedwell DB (2009) Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom). Appl Environ Microbiol 75:3171–3179

    Article  PubMed  CAS  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4:241–244

    Article  CAS  Google Scholar 

  • Flanagana D, Gregorya L, Cartera J, Karakas-Sena A, Richardsona D, Spiroa S (2006) Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270

    Article  Google Scholar 

  • Fogg GE (1967) Observations on the snow algae of the South Orkney Islands. Philos Trans R Soc Lond B Biol Sc Biol Sci 252:279–287

    Article  Google Scholar 

  • Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res. doi:10.1029/2006JG000358

    Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Gerdel RW, Drouet F (1960) The cryoconite of the Thule Area, Greenland. Trans Am Microsc Soc 79:256–272

    Article  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic Bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hodson AJ (2006) Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour Res. doi:10.1029/2005WR004311

    Google Scholar 

  • Hodson AJ, Mumford PN, Kohler J, Wynn PM (2005) The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochem 72:233–256

    Article  CAS  Google Scholar 

  • Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T, Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res. doi:10.1029/2007JG000452

    Google Scholar 

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hodson A, Cameron K, Bøggild C, Irvine-Fynn T, Langford H, Pearce D, Banwart S (2010a) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–362

    Article  CAS  Google Scholar 

  • Hodson A, Bøggild C, Hanna E, Huybrechts P, Langford H, Cameron K, Houldsworth A (2010b) The cryoconite ecosystem on the Greenland ice sheet. Ann Glaciol 51:123–129

    Article  CAS  Google Scholar 

  • Hollocher TC, Tate ME, Nicholas DJ (1981) Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J Biol Chem 256:10834–10836

    PubMed  CAS  Google Scholar 

  • Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982

    Article  PubMed  CAS  Google Scholar 

  • Hunter EM, Mills HJ, Kostka JE (2006) Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol 72:5689–5701

    Article  PubMed  CAS  Google Scholar 

  • Jones H, Deblois C (1986) Chemical dynamics of N-containing ionic species in a Boreal forest snowcover during the spring melt period. Hydrol Process 1:271–282

    Article  Google Scholar 

  • Jungblut AD, Neilan BA (2009) nifH gene diversity and expression in a microbial mat community on the McMurdo Ice Shelf, Antarctica. Antarct Sci 22:117–122

    Article  Google Scholar 

  • Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L (2006) Abundance of narG, nirS, nirK and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl Environ Microbiol 72:5957–5962

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA 110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kim O, Junier P, Imhoff J, Witcel K (2008) Comparative analysis of ammonia monooxygenase (amoA) genes in the water column and sediment–water interface of two lakes and the Baltic Sea. FEMS Microbiol Ecol 66:367–378

    Article  PubMed  CAS  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Mol Biol Rev 46:43–70

    CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Bohm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1384–1390

    Article  CAS  Google Scholar 

  • Kuhn M (2001) The nutrient cycle through snow and ice, a review. Aquat Sci-Res Across Boundaries 63:150–167

    CAS  Google Scholar 

  • Kusian B, Bowien B (1997) Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155

    Article  PubMed  CAS  Google Scholar 

  • Lafrenière M, Sharp M (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct Antarct Alp Res 36:156–165

    Article  Google Scholar 

  • Langford H, Hodson A, Banwart S (2011) Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard. Appl Geochem 26:S206–S209

    Article  CAS  Google Scholar 

  • MacDonell S, Fitzsimons S (2008) The formation and hydrological significance of cryoconite holes. Prog Phys Geogr 32:595–610

    Article  Google Scholar 

  • Matheson FE, Nguyen ML, Cooper AB, Burt TP, Bull DC (2002) Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecol Eng 19:249–264

    Article  Google Scholar 

  • Matoba S, Narita H, Motoyama H, Kamiyama K, Watanabe O (2002) Ice core chemistry of Vestfonna Ice Cap in Svalbard, Norway. J Geophys Res. doi:10.1029/2002JD002205

    Google Scholar 

  • McTavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    PubMed  CAS  Google Scholar 

  • Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Sci 324:397–400

    Article  CAS  Google Scholar 

  • Mintie AT, Heichen RS, Cromack K Jr, Myrold DD, Bottomley PJ (2003) Ammonia-oxidizing bacteria along meadow-to-forest transects in the Oregon Cascade Mountains. Appl Environ Microbiol 69:3129–3136

    Article  PubMed  CAS  Google Scholar 

  • Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig Beih 123:173–197

    Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a High Arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    Article  PubMed  CAS  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184

    Article  CAS  Google Scholar 

  • Negrisolo E, Maistro S, Incarbone M, Moro I, la Valle L, Broady PA, Andreoli C (2004) Morphological convergence characterizes the evolution of Xanthophyceae (Heterokontophyta): evidence from nuclear SSU rDNA and plastidial rbcL genes. Mol Phylogenet Evol 33:156–170

    Article  PubMed  CAS  Google Scholar 

  • Nogales B, Timmis KN, Nedwell DB, Osborn AM (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 68:5017–5025

    Article  PubMed  CAS  Google Scholar 

  • Nordin A, Schmidt IK, Shaver GR (2004) Nitrogen uptake by Arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962

    Article  Google Scholar 

  • Olson JB, Steppe TF, Litaker RW, Paerl JW (1998) N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb Ecol 36:231–238

    Article  PubMed  CAS  Google Scholar 

  • Park SW, Hwang EH, Jang HS, Lee JH, Kang BS, Oh JI, Kim YM (2009) Presence of duplicate genes encoding a phylogenetically new subgroup of form I Ribulose 1,5-bisphosphate carboxylase/oxygenase in Mycobacterium sp. strain JC1 DSM 3803. Res Microbiol 160:159–165

    Article  PubMed  CAS  Google Scholar 

  • Paul JH, Albin A, Boris W (2000) Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Marine Ecol Prog Ser 198:9–18

    Article  CAS  Google Scholar 

  • Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832

    Article  PubMed  CAS  Google Scholar 

  • Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2007) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 25:478

    Article  CAS  Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct Antarct Alp Res 36:84–91

    Article  Google Scholar 

  • Priscu JC, Christner BC (2004) Earths icy bioshpere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington

  • Řehák J, Řehák S, Stibal M, Řeháková K, Šabacká M, Kostka S (2007) Glacier caves and drainage systems of the northern part of Hornsund area, southwest Spitsbergen, Svalbard. In: 8th GLACKIPR symposium, Sosnowiec, Poland, p 111

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Env Microbiol 63:4704–4712

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Santoro A, Francis C, Sieyes N, Boehm A (2008) Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Env Microbiol 10:1068–1079

    Article  CAS  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biol 25:591–596

    Google Scholar 

  • Scala DJ, Kerkhof LJ (1998) Nitrous oxide reductase (nosZ) gene-specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiol Lett 162:61–68

    Article  PubMed  CAS  Google Scholar 

  • Schalk J, de Vries S, Kuenen JG, Jetten MSM (2000) Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation. Biochem 39:5405–5412

    Article  CAS  Google Scholar 

  • Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the Myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Schütte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268

    Article  PubMed  Google Scholar 

  • Selesi D, Schmid M, Hartmann A (2005) Diversity of green-like and red-like Ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl Env Microbiol 71:175–184

    Article  CAS  Google Scholar 

  • Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876

    PubMed  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73:3612–3622

    Article  PubMed  CAS  Google Scholar 

  • Song B, Ward B (2006) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43:349–357

    Article  Google Scholar 

  • Spiridonova EM, Berg IA, Kolganova TV, Ivanovsky RN, Kuznetsov BB, Tourova TP (2004) An oligonucleotide primer system for amplification of the Ribulose-1,5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiol 73:316–325

    Article  CAS  Google Scholar 

  • Stibal M, Tranter M (2007) Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. J Geophys Res. doi:10.1029/2007JG000429

    Google Scholar 

  • Stibal M, Tranter M, Benning LG, Rehak J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Env Microbiol 10:2172–2178

    Article  CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nat 440:790–794

    Article  Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189

    PubMed  CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Goto-Azuma K, Koerner RM (2001a) Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps) Mem. Natl Inst Polar Res 54:495–505

    Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001b) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Telling J, Anesio AM, Hawkings J, Tranter M, Wadham JL, Hodson AJ, Irvine-Fynn T, Yallop ML (2010) Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann Glaciol 51:153–162

    Article  CAS  Google Scholar 

  • Telling J, Anesio AM, Tranter M, Irvine-Fynn T, Hodson AJ, Butler C, Wadham JL (2011) Nitrogen fixation on Arctic glaciers, Svalbard. J Geophys Res. doi:10.1029/2010JG001632

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of Cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  PubMed  CAS  Google Scholar 

  • Tranter M, Brown G, Raiswell R, Sharp M, Gurnell A (1993) A conceptual model of solute acquisition by Alpine glacial meltwaters. J Glaciol 39:573–581

    CAS  Google Scholar 

  • Tranter M, Brown G, Hodson A, Gurnell A, Sharp M (1994) Variations in the nitrate concentration of glacial runoff in Alpine and sub-Polar environments. Snow and ice covers: interactions with the atmosphere and ecosystems. In: Proceedings of Yokohama Symposia J2 and J5, July 1993. IAHS Publ. no. 423, vol 223, pp 299–311

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Article  PubMed  CAS  Google Scholar 

  • van de Graaf AA, Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    PubMed  Google Scholar 

  • Vincent WF, Gibson JAE, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the High Arctic and implications for life on snowball earth. Naturwissenschaften 87:137–141

    Article  PubMed  CAS  Google Scholar 

  • von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Warnecke-Eberz U, Friedrich B (1993) Three nitrate reductase activities in Alcaligenes eutrophus. Arch Microbiol 159:405–409

    Article  CAS  Google Scholar 

  • Watson GM, Tabita FR (1997) Microbial Ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22

    Article  PubMed  CAS  Google Scholar 

  • Wawrik B, Paul JH, Tabita FR (2002) Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes. Appl Environ Microbiol 68:3771–3779

    Article  PubMed  CAS  Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1985) Cryoconite holes on glaciers. BioSci 35:499–503

    Article  Google Scholar 

  • Wynn P, Hodson A, Heaton T (2006) Chemical and isotopic switching within the subglacial environment of a High Arctic glacier. Biogeochem 78:173–193

    Article  CAS  Google Scholar 

  • Wynn PM, Hodson AJ, Heaton THE, Chenery SR (2007) Nitrate production beneath a High Arctic glacier, Svalbard. Chem Geol 244:88–102

    Article  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Bhattacharya D (2002) A single origin of the peridinin- and fucoxanthin-containing plastids in Dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729

    Article  PubMed  CAS  Google Scholar 

  • Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526

    PubMed  CAS  Google Scholar 

  • Zehr JP, Jenkins BD, Short SM, Steward GF (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554

    Article  PubMed  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KC was funded by a Ph.D. studentship awarded by the University of Sheffield. This research was supported by a Leverhulme Research Fellowship (RF/4/RFG/2007/0398) awarded to AJH and by the NERC for providing access to the NERC Arctic Research Station. The authors would like to acknowledge the support of Nick Cox, Steve Marshall and Rob Smith at the NERC Arctic Station, Ny Ålesund, Svalbard and Monica Kristensen and Jacob Yde for support during Svalbard and Greenland fieldwork. KC was supported during manuscript preparation by NSF-OPP grant 0739783 (awarded to Karen Junge) and NSF-OPP grant 1023462 (awarded to Karen Junge and Ronald Sletten).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, K.A., Hodson, A.J. & Osborn, A.M. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol 35, 1375–1393 (2012). https://doi.org/10.1007/s00300-012-1178-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1178-3

Keywords

Navigation