Skip to main content

Advertisement

Log in

Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The present study investigated the effects of ocean acidification and temperature increase on Neogloboquadrina pachyderma (sinistral), the dominant planktonic foraminifer in the Arctic Ocean. Due to the naturally low concentration of CO 2−3 in the Arctic, this foraminifer could be particularly sensitive to the forecast changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, perturbation experiments were performed on juvenile and adult specimens by manipulating seawater to mimic the present-day carbon dioxide level and a future ocean acidification scenario (end of the century) under controlled (in situ) and elevated temperatures (1 and 4 °C, respectively). Foraminifera mortality was unaffected under all the different experiment treatments. Under low pH, N. pachyderma (s) shell net calcification rates decreased. This decrease was higher (30 %) in the juvenile specimens than decrease observed in the adults (21 %) ones. However, decrease in net calcification was moderated when both, pH decreased and temperature increased simultaneously. When only temperature increased, a net calcification rate for both life stages was not affected. These results show that forecast changes in seawater chemistry would impact calcite production in N. pachyderma (s), possibly leading to a reduction of calcite flux contribution and consequently a decrease in biologic pump efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archer DA, Winguth DL, Mahowald N (2000) What caused the glacial/interglacial pCO2 cycles? Rev Geophys 38:159–189

    Article  CAS  Google Scholar 

  • Barker S, Elderfield H (2002) Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297:833–836

    Article  PubMed  CAS  Google Scholar 

  • Bauch D, Darling K, Simstich J, Bauch HA, Erlenkeuser H, Kroon D (2003) Palaeoceanographic implications of genetic variation in living North Atlantic Neogloboquadrina pachyderma. Nature 424:299–302

    Article  PubMed  CAS  Google Scholar 

  • Bellerby RGJ, Olsen A, Furevik T, Anderson LA (2005) Response of the surface ocean CO2 system in the Nordic Seas and North Atlantic to climate change. In: Drange H, Dokken TM, Furevik T, Gerdes R, Berger W (eds) Climate variability in the Nordic Seas. Geophysical Monograph Series, AGU, pp 189–198

  • Bentov S, Brownlee C, Erez J (2009) The role of seawater endocytosis in the biomineralization process in calcareous foraminifera. PNAS 106:21500–21504

    Article  PubMed  Google Scholar 

  • Bergami C, Capotondi L, Langone L, Giglio F, Ravaioli M (2009) Distribution of living planktonic foraminifera in the Ross Sea and the Pacific sector of the Southern Ocean (Antarctica). Mar Micropaleontol 73:37–48

    Article  Google Scholar 

  • Bijma J, Spero HJ, Lea DW (1999) Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G (eds) Uses of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 489–512

    Chapter  Google Scholar 

  • Bijma J, Hönisch B, Zeebe RE (2002) Impact of the ocean carbonate chemistry on living foraminiferal shell weight. In: Broecker WS and Clark E (ed) Comment on “Carbonate ion concentration in glacial-age deep waters of the Caribbean Sea”. Geochem Geophys Geosyst 3:1064–1071

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Carstens J, Hebbeln D, Wefer G (1997) Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait). Mar Micropaleontol 29:257–269

    Article  Google Scholar 

  • Comeau S, Gorsky G, Alliouane S, Gattuso JP (2010) Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Mar Biol 157:2341–2345

    Article  CAS  Google Scholar 

  • Conan H, Ivanova EM, Brummer GJA (2002) Quantifying carbonate dissolution and calibration of foraminiferal dissolution indices in the Somali Basin. Mar Geol 182:325–349

    Article  CAS  Google Scholar 

  • Coyle KO, Highsmith RC (1989) Arctic ampeliscid amphipods: three new species. J Crustacean Biol 9:157–175

    Article  Google Scholar 

  • Darling KF, Kucera M, Kroon D, Wade CM (2006) A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography 21:PA2011

    Article  Google Scholar 

  • de Moel H, Ganssen GM, Peeters FJC, Jung SJA, Kroon D, Brummer GJA, Zeebe RE (2009) Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences 6:1917–1925

    Article  Google Scholar 

  • de Villiers S (2004) Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera. Mar Biol 144:45–50

    Article  Google Scholar 

  • Dickson AG (1990) Standard potential of the (AgCl(s) + 1/2H2 (g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constant s for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for CO2 measurements. PICES Special Publication 3

  • Fabry V, Seibel B, Feely R, Orr J (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellweather. Oceanography 22:160–171

    Article  Google Scholar 

  • Fujita K, Hikami M, Suzuki A, Kuroyanagi A, Sakai K, Kawahata H, Nojiri Y (2011) Effects of ocean acidification on calcification of symbiont-bearing reef foraminifera. Biogeosciences 8:2089–2098

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Gattuso JP, Lee K, Rost B, Schulz K, Gao K (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Office for Official Publications of the European Union, Luxembourg, pp 41–52

    Google Scholar 

  • Gazeau F, Gattuso JP, Dawber C, Pronkerm AE, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel (Mytilus edulis). Biogeosciences Discuss 7:2927–2947

    Article  Google Scholar 

  • Gonzalez-Mora B, Sierro FJ, Flores JA (2008) Controls of shell calcification in planktonic foraminifers. Quat Sci Rev 27:956–961

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations of seawater with hydrochloric acid. Oceanol Acta 5:209–218

    Google Scholar 

  • Green MA, George G, Shannon W, Reilly L, Emerson K, O’Donnell S (2009) Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol Oceanogr 54:1048–1059

    Article  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134:320–342

    Article  PubMed  CAS  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 6:3009–3015

    Article  CAS  Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduces fertilization success in a sea urchin. Curr Biol 18:651–652

    Article  Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer, New York

    Book  Google Scholar 

  • Hendry KR, Rickaby REM, Meredith MP, Elderfield H (2009) Controls on stable isotope and trace metal uptake in Neogloboquadrina pachyderma (sinistral) from an Antarctic sea-ice environment. Earth Planet Sci Lett 278:67–77

    Article  CAS  Google Scholar 

  • Johnson KM, Williams PJ, Brandstrom L, Sieburth JMcN (1987) Coulometric total carbon analysis for marine studies: automation and calibration. Mar Chem 21:117–133

    Article  CAS  Google Scholar 

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral Reefs and Climate Change: Science and Management, AGU Monograph Series, Coastal and Estuarine Studies, vol 61. American Geophysical Union, Washington, pp 73–110

  • Kurihara (2008) Contribute to theme section effects of ocean acidification on marine ecosystems. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Kuroyanagi A, Kawahata H, Suzuki A, Fujita K, Irie T (2009) Impacts of ocean acidification on large benthic foraminifers: results from laboratory experiments. Mar Micropaleontol 73:190–195

    Article  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated CO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Article  Google Scholar 

  • Langer MR (2008) Assessing the contribution of foraminiferan protists to global ocean carbonate production. J Eukaryot Microbiol 55(3):163–169

    Article  PubMed  Google Scholar 

  • Lavigne H, Gattuso JP (2010) Seacarb: seawater carbonate chemistry with R. R package version 2.3.5. http://CRAN.R-project.org/package=seacarb

  • Legendre L, Le Fèvre J (1991) From individual plankton cells to pelagic marine ecosystems and to global biogeochemical cycles. In: Demers S (ed) Particle analysis in oceanography. Ecological Sciences 27 NATO AS1 series, pp 261–300

  • Lewis E, Wallace D (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy

  • Lombard F, Labeyrie L, Michel E, Spero HJ, Lea DW (2009) Modelling the temperature dependent growth rates of planktic foraminifera. Mar Micropaleontol 70:1–7

    Article  Google Scholar 

  • Lombard F, Rocha RE, Bijma J, Gattuso JP (2010) Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences 7(1):247–255

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Milliman JD, Doxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment ignorance is not bliss. Geol Rundsch 85:496–504

    Article  CAS  Google Scholar 

  • Mintrop L, Perez FF, Gonzalez-Davila M, Santana-Casiano JM, Kfrtzinger A (2000) Alkalinity determination by potentiometry intercalibration using three different methods. Cienci Mar 26:23–37

    CAS  Google Scholar 

  • Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat Geosci 2:276–280

    Article  CAS  Google Scholar 

  • Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. PNAS 106:15374–15378

    Article  PubMed  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Orr JC, Jutterström S, Bopp L, Anderson LG, Cadule P, Fabry VJ, Frölicher T, Jones EP, Joos F, Lenton A, Maier-Reimer E, Segschneider J, Steinacher M, Swingedouw D (2009) Amplified acidification of the Arctic Ocean. IOP Conf Ser Earth Environ Sci 6:46

    Article  Google Scholar 

  • Pawlowski J, Bolivar I, Fahrini JF, De Vargas C, Bowser SS (1999) Molecular evidence that Reticulomyxa filosa is a freshwater naked foraminifer. J Eukaryot Microbiol 46:612–617

    Article  PubMed  CAS  Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper E, Crame AJ (eds) Evolutionary biology of the Bivalvia. Geol Soc Lond Spec Publ, vol 177. Cambridge University Press, Cambridge, pp 441–450

  • Peterson BJ, McClelland J, Curry R, Holmes RM, Walsh JE, Aagaard K (2006) Trajectory shifts in the Arctic and subarctic freshwater cycle. Science 313:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Pflaumann U, Duprat J, Pujol C, Labeyrie L (1996) SIMMAX: A modern analog technique to deduce Atlantic Sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11:15–35

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. PNAS 104:10288–10293

    Article  PubMed  CAS  Google Scholar 

  • Reynolds LA, Thunell RC (1989) Seasonal succession of planktonic foraminifera: results from four-year series sediment trap experiment in the Northeast Pacific. J Foraminifera Res 19:253–267

    Article  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Riebesell U, Bellerby R, Grossart HP, Thingstad F (2008) Mesocosm CO2 perturbation studies: from organism to community level. Biogeosciences 5:1157–1164

    Article  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Russell AD, Hönisch B, Spero HJ, Lea DW (2004) Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochim Cosmochim Acta 68:4347–4361

    Article  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios FA (2004) The oceanic sink for anthropogenic CO2. Science 305:367–370

    Article  PubMed  CAS  Google Scholar 

  • Schiebel R (2002) Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem Cycles 16:1065–1086

    Article  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal stable isotopes. Nature 390:497–500

    Article  CAS  Google Scholar 

  • Spindler HC, Salomons JB, Smit LP (1984) Feeding, on the behavior of some planktonic foraminifers in laboratory cultures. J Foraminifera Res 14:237–249

    Article  Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Plattner GK, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Article  Google Scholar 

  • ter Kuile B, Erez J (1987) Uptake of inorganic carbon and internal carbon cycling in symbiont-bearing benthonic foraminifera. Mar Biol 94:499–509

    Article  Google Scholar 

  • Volkmann R (2000) Planktonic foraminifers in the Fram Strait and the outer Laptev Sea: modern distribution and ecology. J Foraminifera Res 30:157–176

    Article  Google Scholar 

  • Wood HL, Spicer JI, Lowe DM, Widdicombe S (2010) Interaction of ocean acidification and temperature; the high cost of survival in the brittlestar Ophiura ophiura. Mar Biol 157:2001–2013

    Article  Google Scholar 

  • Zhong S, Mucci A (1989) Calcite and aragonite precipitation from seawater solutions of various salinities: precipitation rates and overgrowth compositions. Chem Geol 78:283–299

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been partially funded by the Marine Ecosystem Response to a Changing Climate project (MERCLIM No 184860) financed by the program NORKLIMA through the Norwegian Research Council and through Theme 6 of the EC seventh framework program through the Marine Ecosystem Evolution in a Changing Environment (MEECE No 212085) Collaborative Project. We also thank Steeve Comeau, Azumi Kuroyanagi and Caterina Bergami who greatly improved the manuscript with their comments. Special thanks go to the crew members of the R/V G.O. Sars, whose efficiency and kindness helped to resolve every practical problem. We are very grateful to the chemical oceanography team of Bjerknes Centre for Climate Research for AT and CT analyses and to Carmen Casado to help with statistical data investigation. We want to thank Anais Aubert, Christian Wexel-Reiser, Tobias Tamelander, Helene Frigstad and Anna Silyakova for their great help and suggestions on board the G.O. Sars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Manno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manno, C., Morata, N. & Bellerby, R. Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biol 35, 1311–1319 (2012). https://doi.org/10.1007/s00300-012-1174-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1174-7

Keywords

Navigation