Skip to main content

Advertisement

Log in

Non-consumptive factors affecting foraging patterns in Antarctic penguins: a review and synthesis

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Recent research has clearly shown that the fear of predation, i.e. aversion to taking risks, among mesopredators or grazers, and not merely flight from an apex predator to avoid predation, is an important aspect of ecosystem structuring. In only a few, though well-documented cases, however, has this been considered in the marine environment. Herein, we review studies that have quantified behavioral responses of Adélie penguins Pygoscelis adeliae and emperor penguins Aptenodytes forsteri to the direct presence of predators, and question why the penguins avoid entering or exiting the water at night. We also show, through literature review and new analyses of Adélie penguin diving data, that Antarctic penguins are capable of successful prey capture in the dark (defined here as <3.4 lux). Finally, we summarize extensive data on seasonal migration relative to darkness and prey availability. On the basis of our findings, we propose that penguins’ avoidance of foraging at night is due to fear of predation, and not to an inability to operate effectively in darkness. We further propose that, at polar latitudes where darkness is more a seasonal than a year-round, daily feature, this “risk aversion” affects migratory movements in both species, consistent with the “trade-off” hypothesis seen in other marine vertebrates weighing foraging success against predation risk in their choice of foraging habitat. Such non-consumptive, behavioral aspects of species interactions have yet to be considered as important in Southern Ocean food webs, but may help to explain enigmatic movement patterns and choice of foraging grounds in these penguin species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ainley DG (1975) Comfort behaviour of Adélie and other penguins. Behaviour 43:16–51

    Google Scholar 

  • Ainley DG (1985) The biomass of birds and mammals in the Ross Sea, Antarctica. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Hamburg, pp 498–515

  • Ainley DG (2002) The Adelie penguin: bellwether of climate change. Columbia University Press, New York

  • Ainley DG, Jacobs SS (1981) Affinity of seabirds for ocean and ice boundaries in the Antarctic. Deep-Sea Res 28A:1173–1185

    Google Scholar 

  • Ainley DG, O’Connor EF, Boekelheide RJ (1984)  Ecology of seabirds in the Ross Sea, Antarctica. AOU Monogr No 32:1–79

    Google Scholar 

  • Ainley DG, Ribic CA, Fraser WR (1992) Does prey preference affect habitat choice in Antarctic seabirds? Mar Ecol Prog Ser 90:207–221

    Google Scholar 

  • Ainley DG, Ribic CA, Spear LB (1993) Species-habitat relationships among Antarctic seabirds: a function of physical and biological factors? Condor 95:806–816

    Google Scholar 

  • Ainley DG, Ribic CA, Ballard G, Heath S, Gaffney I, Karl BJ, Barton KR, Wilson PR, Webb S (2004) Geographic structure of Adélie Penguin populations: size, overlap and use of adjacent colony-specific foraging areas. Ecol Monogr 74:159–178

    Google Scholar 

  • Ainley DG, Ballard G, Karl BJ, Dugger KT (2005) Leopard seal predation rates at penguin colonies of different size. Antarct Sci 17:335–340

    Google Scholar 

  • Ainley DG, Ballard G, Dugger KM (2006) Competition among penguins and cetaceans reveals trophic cascades in the Ross Sea, Antarctica. Ecology 87:2080–2093

    PubMed  Google Scholar 

  • Ainley DG, Ballard G, Ackley S, Blight LK, Eastman JT, Emslie SD, Lescroël A, Olmastroni S, Townsend SE, Tynan CT, Wilson P, Woehler E (2007) Paradigm lost, or, is top-down forcing no longer significant in the Antarctic marine ecosystem? Antarct Sci 19:283–290

    Google Scholar 

  • Ainley DG, Ballard G, Blight LK, Ackley S, Emslie SD, Lescroël A, Olmastroni S, Townsend SE, Tynan CT, Wilson PR, Woehler E (2010a) Impacts of cetaceans on the structure of southern ocean food webs. Mar Mamm Sci 26:482–498

    Google Scholar 

  • Ainley DG, Ballard G, Weller J (2010b) Ross Sea bioregionalization, part I: validation of the 2007 CCAMLR bioregionalization workshop results towards including the Ross Sea in a representative network of marine protected areas in the Southern Ocean. CCAMLR WG-EMM-10/11, Hobart

  • Ancel A, Kooyman GL, Ponganis PJ, Gendner JP, Lignon J, Mestre X, Huin N, Thorson PH, Robisson P, LeMaho Y (1992) Foraging behavior of emperor penguins as a resource detector in winter and summer. Nature 360:336–338

    Google Scholar 

  • Andrews RD, Pitman RL, Ballance LT (2008) Satellite tracking reveals distinct movement patterns for type B and type C killer whales in the southern Ross Sea, Antarctica. Polar Biol 31:1461–1468

    Google Scholar 

  • Anholt BR, Werner EE (1995) Interactions between food availability and predation mortality mediated by adaptive behaviour. Ecology 76:2230–2234

    Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Schieber B, Lizotte MP (1998) Bio-optical properties of the southwestern Ross Sea. J Geophys Res 103:21,683–21695

    CAS  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, Van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    PubMed  CAS  Google Scholar 

  • Baird RW, Hanson MB, Ashe EE, Heithaus MR, Marshall GJ (2003) Studies of foraging in “southern resident” killer whales during July 2002: dive depths, bursts in speed, and the use of a “crittercam” system for examining sub-surface behavior. NMFS, NMML Doc.AB133F-02-SE-1744, Seattle, WA

  • Ballance LT, Ainley DG, Ballard G, Barton K (2009) An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J Avian Biol 40:279–288

    Google Scholar 

  • Ballard G (2010) Biotic and physical forces as determinants of Adélie penguin population location and size. PhD thesis, University of Auckland, Auckland, New Zealand

  • Ballard G, Ainley DG, Ribic CA, Barton KR (2001) Effect of instrument attachment on foraging trip duration and nesting success of Adélie penguins. Condor 103:481–490

    Google Scholar 

  • Ballard G, Toniolo V, Ainley DG, Parkinson CL, Arrigo KR, Trathan PN (2010a) Responding to climate change: Adélie penguins confront astronomical and ocean boundaries. Ecology 91:2056–2069

    PubMed  Google Scholar 

  • Ballard G, Jongsomjit D, Ainley DG (2010b) Ross Sea bioregionalization, part II: patterns of co-occurrence of mesopredators in an intact polar ocean ecosystem. CCAMLR WG-EMM-10/12, Hobart; and ms accepted in Biol Conserv

  • Barbraud C, Weimerskirch H (2001) Emperor penguins and climate change. Nature 411:183–186

    PubMed  CAS  Google Scholar 

  • Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol 78:699–714

    Google Scholar 

  • Bolker BM, Brooks ME, Clark DJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    PubMed  Google Scholar 

  • Bond DS, Henderson FP (1963) The conquest of darkness. Report AD 346297. Defense Documentation Center, Alexandria

    Google Scholar 

  • Bost CA, Zorn T, Le Maho Y, Duhamel G (2002) Feeding of diving predators and diel vertical migration of prey: King penguins’ diet versus trawl sampling at Kerguelen Islands. Mar Ecol Prog Ser 227:51–61

    Google Scholar 

  • Bost CA, Handrich Y, Butler P, Fahlman A, Halsey LG, Woakes AJ, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep-Sea Res II 54:248–255

    Google Scholar 

  • Burns JM, Kooyman FL (2001) Habitat use by Weddell Seals and Emperor Penguins foraging in the Ross Sea, Antarctica. Am Zool 41:90–98

    Google Scholar 

  • Butler RW, Ydenberg RC, Lank DB (2003) Wader migration on the changing predator landscape. Wader Study Group Bull 100:30–133

    Google Scholar 

  • Cannell BL, Cullen JM (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140:467–471

    Google Scholar 

  • Chappell M, Janes D, Shoemaker V, Bucher T, Maloney S (1993) Reproductive effort in Adélie penguins. Beh Ecol Sociobiol 33:173–182

    Google Scholar 

  • Clark CW, Levy DA (1988) Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am Nat 131:271–290

    Google Scholar 

  • Croxall JP, Everson I, Kooyman GL, Ricketts C, Davis RW (1985) Fur seal diving behavior in relation to the vertical distribution of krill. J Anim Ecol 54:1–8

    Google Scholar 

  • Davis RW, Hagey W, Horning M (2004) Monitoring the behavior and multi-dimensional movements of Weddell seals using an animal-borne video and data recorder. Mem Natl Inst Polar Res, Spec Issue 58:150–156

    Google Scholar 

  • DiTullio GR, Grebmeier J, Arrigo KR, Lizotte MP, Robinson DH, Leventer A, Barry J, VanWoert M, Dunbar RB (2000) Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404:595–598

    PubMed  CAS  Google Scholar 

  • Eastman JT, Lannoo MJ (2011) Divergence of brain and retinal anatomy and histology in pelagic Antarctic notothenioid fishes of the sister taxa Dissostichus and Pleuragramma. J Morph 272:419–441

    PubMed  Google Scholar 

  • Fraser WR, Trivelpiece WZ (1996) Factors controlling the distribution of seabirds: winter-summer heterogeneity in the distribution of Adélie penguin populations. Antarct Res Ser 70:257–272

    Google Scholar 

  • Fretwell PT, Trathan PN (2009) Penguins from space: faecal stains reveal the location of emperor penguin colonies. Global Ecol Biogeogr. doi10.1111/j.1466-8238.2009.00467.x

  • Fuiman LA, Davis RW, Williams TM (2002) Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140:815–822

    Google Scholar 

  • Gelatt TS, Siniff DB (1999) Line transect survey of crabeater seals in the Amundsen-Bellingshausen Seas, 1994. Wildl Soc Bull 27:330–336

    Google Scholar 

  • Gill PC, Thiele D (1997) A winter sighting of killer whales (Orcinus orca) in Antarctic sea ice. Polar Biol 17:401–404

    Google Scholar 

  • Gliwicz MZ (1986) Predation and the evolution of vertical migration in zooplankton. Nature 320:746–748

    Google Scholar 

  • Grémillet D, Kuntz G, Gilbert C, Woakes AJ, Butler PJ, La Maho Y (2005) Cormorants dive through the Polar night. Biol Lett 1:469–471

    PubMed  Google Scholar 

  • Guinet C (1992) Comportement de chasse des orques (Orcinus orca) autour des îles Crozet. Can J Zool 70:1656–1667

    Google Scholar 

  • Heithaus MR (2005) Habitat use and group size of pied cormorants (Phalacrocorax varius) in a seagrass ecosystem: possible effects of food abundance and predation risk. Mar Biol 147:27–35

    Google Scholar 

  • Heithaus MR, Dill LM (2002) Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83:480–491

    Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Dill LM, Fourqurean JW, Burkholder D, Thomson J, Bejder L (2007) State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J Anim Ecol 76:837–844

    PubMed  Google Scholar 

  • Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210

    PubMed  Google Scholar 

  • Jansen JK, Boveng PL, Bengtson JL (1998) Foraging modes of chinstrap penguins: contrasts between day and night. Mar Ecol Prog Ser 165:161–172

    Google Scholar 

  • Jenouvrier S, Caswell H, Barbraud C, Holland M, Stoeve J, Weimerskirch H (2009) Demographic models and IPCC climate projections predict the decline of an emperor penguin population. Proc Natl Acad Sci 106:1844–1847

    PubMed  CAS  Google Scholar 

  • Kirkwood R, Robertson G (1997a) Seasonal change in the foraging ecology of emperor penguins on the Mawson coast, Antarctica. Mar Ecol Prog Ser 156:205–223

    Google Scholar 

  • Kirkwood R, Robertson G (1997b) The foraging ecology of female emperor penguins in winter. Ecol Monogr 67:155–176

    Google Scholar 

  • Kooyman GL (1965) Leopard seals of Cape Crozier. Animals 6:59–63

    Google Scholar 

  • Kooyman GL, Kooyman TG (1995) Diving behavior of emperor penguins nurturing chicks at Coulman Island, Antarctica. Condor 97:536–549

    Google Scholar 

  • Kooyman GL, Ponganis P (2008) The initial journey of juvenile emperor penguins. Aquat Conserv: Mar Freshw Syst 17:S37–S43

    Google Scholar 

  • Kooyman GL, Croll D, Stone S, Smith S (1990) Emperor penguin colony at Cape Washington, Antarctica. Polar Rec 26:103–108

    Google Scholar 

  • Kooyman GL, Kooyman TG, Horning M, Kooyman CA (1996) Penguin dispersal after fledging. Nature 383:397

    CAS  Google Scholar 

  • Kooyman GL, Siniff DB, Stirling I, Bengtson JL (2004) Moult habitat, pre- and post-moult diet and post-moult travel of Ross Sea emperor penguins. Mar Ecol Prog Ser 267:281–290

    Google Scholar 

  • La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338

    Google Scholar 

  • Lalli CM, Parsons TR (1993) Biological oceanography: an introduction. Pergamon, Oxford

    Google Scholar 

  • Lank DB, Butler RW, Ireland J, Ydenberg RC (2003) Effects of predation danger on migration strategies of sandpipers. Oikos 103:303–319

    Google Scholar 

  • Lauriano G, Fortuna CM, Vacchi M (2007) Observation of killer whale (Orcinus orca) possibly eating penguins in Terra Nova Bay, Antarctica. Antarct Sci 19:95–96

    Google Scholar 

  • Lescroël A, Bost C-A (2005) Foraging under contrasting oceanographic conditions: the gentoo penguin at Kerguelen Archipelago. Mar Ecol Prog Ser 302:245–261

    Google Scholar 

  • Lescroël A, Ballard G, Dugger K, Barton K, Ainley DG (2010) Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91:2044–2055

    PubMed  Google Scholar 

  • Levick GM (1914) Antarctic penguins: a study of their social habits. William Heinemann, London

    Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640

    Google Scholar 

  • Martin GR (1999) Eye structure and foraging in King Penguins Aptenodytes patagonicus. Ibis 141:444–450

    Google Scholar 

  • McCafferty DJ, Walker TR, Boyd IL (2004) Using time-depth light recorders to measure light levels experienced by a diving marine mammal. Mar Biol 146:191–199

    Google Scholar 

  • McLaren BE, Peterson RO (1994) Wolves, moose and tree rings on Isle Royale. Science 266:1555–1558

    PubMed  CAS  Google Scholar 

  • Mikhalev YA, Ivahin MV, Savusin VP, Zelenaya FE (1981) The distribution and biology of killer whales in the Southern Hemisphere. Rep Internatl Whal Comm 31:551–566

    Google Scholar 

  • Miller AK, Trivelpiece WZ (2008) Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey, Antarctic krill. Mar Biol 154:201–208

    Google Scholar 

  • Monod T (1991) Bathyfolages: plongées profondes. Réédition Actes Sud, Arles (original publications Juillard, Paris, 1954)

  • Morrell V (2011) Killer whales earn their name. Science 331:274–276

    Google Scholar 

  • Müller-Schwarze D, Müller-Schwarze C (1975) Relations between leopard seals and Adélie penguins. Rapp Proces-Verbaux Reunions Conseil Perm Internatl Explor Mer 169:394–404

    Google Scholar 

  • Nesterova A, Le Bohec C, Beaune D, Pettex E, Le Maho Y, Bonadonna F (2010) Do penguins dare to walk at night? Visual cues influence king penguin colony arrivals and departures. Beh Ecol Sociobiol 64:1145–1156

    Google Scholar 

  • Nicol S, Pauly T, Bindoff NL, Wright S, Thiele D, Hosie GW, Strutton PG, Woehler E (2000) Ocean circulation off east Antarctica affects ecosystem structure and ice extent. Nature 406:504–507

    PubMed  CAS  Google Scholar 

  • Nordøy ES, Blix AS (2009) Movements and dive behaviour of two leopard seals (Hydrurga leptonyx) off Queen Maud Land, Antarctica. Polar Biol 32:263–270

    Google Scholar 

  • Penney RL, Lowry G (1967) Leopard seal predation on Adélie penguins. Ecology 48:878–882

    Google Scholar 

  • Pitman RL, Durban J (2010) Killer whale predation on penguins in Antarctica. Polar Biol 34:303–306

    Google Scholar 

  • Pitman RL, Ensor P (2003) Three forms of killer whales (Orcinus orca) in Antarctic waters. J Cetacean Res Manag 5:1–9

    Google Scholar 

  • Prugh LA, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Google Scholar 

  • Reisinger RR, de Bruyn PJN, Bester MN (2011) Predatory impact of killer whales on pinniped and penguin populations at the subantarctic Prince Edward Islands: fact and fiction. Can J Zool (in press)

  • Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience 54:755–766

    Google Scholar 

  • Ropert-Coudert Y, Kato A, Baudat J, Bost C, Le Maho Y, Naito Y (2001) Feeding strategies of free-ranging Adélie Penguins Pygoscelis adeliae analysed by multiple data recording. Polar Biol 24:460–466

    Google Scholar 

  • Schreer JF, Kovacs KM, Hines RJO (2001) Comparative diving patterns of pinnipeds and seabirds. Ecol Monogr 71:137–162

    Google Scholar 

  • Schreiber EA, Burger J (eds) (2001) Biology of Marine Birds. CRC Press, Boca Raton

    Google Scholar 

  • Smetacek V, Nicol S (2005) Polar ocean ecosystems in a changing world. Nature 437:362–368

    PubMed  CAS  Google Scholar 

  • Smith WO Jr, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: A satellite perspective. J Geophys Res 113. doi:10.1029/2007JC004251

  • Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the eastern tropical Pacific Ocean. Stud Avian Biol 35:1–99

    Google Scholar 

  • Spellerberg IF (1975) The predators of penguins. In: Stonehouse B (ed) The biology of penguins. Macmillan, London, pp 413–434

    Google Scholar 

  • Takahashi A, Dunn MJ, Trathan PN, Sato K, Naito Y, Croxall JP (2003) Foraging strategies of chinstrap penguins at Signy Island, Antarctica: importance of benthic feeding on Antarctic krill. Mar Ecol Prog Ser 250:279–289

    Google Scholar 

  • Terbrough J, Estes JA (2010) Trophic cascades. Island Press, Washington

    Google Scholar 

  • Trathan PN, Fretwell PT, Stonehouse B (2011) First recorded loss of an emperor penguin colony in the recent period of Antarctic regional warming: implications for other colonies. PLoS ONE 6(2):e14738. doi:10.1371/journal.pone.0014738

    PubMed  CAS  Google Scholar 

  • Tremblay Y, Bertrand S, Henry RW, Kappes MA, Costa DP, Shaffer SA (2009) Analytical approaches to investigating seabird–environment interactions: a review. Mar Ecol Prog Ser 391:153–163

    Google Scholar 

  • Tynan CT (1998) Ecological importance of the southern boundary of the Antarctic circumpolar current. Nature 392:708–710

    CAS  Google Scholar 

  • Van Dam RP, Kooyman GL (2004) Latitudinal distribution of penguins, seals and whales observed during a late autumn transect through the Ross Sea. Antarct Sci 16:313–318

    Google Scholar 

  • Visser IN, Smith TG, Bullock ID, Green GD, Carlsson OGL, Imberti S (2008) Antarctic Peninsula killer whales (Orcinus orca) hunt seals and a penguin on floating ice. Mar Mamm Sci 24:225–234

    Google Scholar 

  • Watanuki Y, Kato A, Naito Y, Robertson G, Robinson S (1997) Diving and foraging behaviour of Adélie penguins in areas with and without fast sea-ice. Polar Biol 17:296–304

    Google Scholar 

  • Whitehead MD (1989) Maximum diving depths of the Adélie penguin, Pygoscelis adeliae, during the chick rearing period, in Prydz Bay, Antarctica. Polar Biol 9:329–332

    Google Scholar 

  • Wienecke BC, Robertson G (1997) Foraging space of emperor penguins Aptenodytes forsteri in Antarctic shelf waters in winter. Mar Ecol Prog Ser 159:249–263

    Google Scholar 

  • Wienecke B, Kirkwood R, Robertson G (2004) Pre-moult foraging trips and moult locations of Emperor penguins at the Mawson Coast. Polar Biol 27:83–91

    Google Scholar 

  • Wienecke B, Raymond B, Robertson G (2010) Maiden journey of fledgling emperor penguins from the Mawson Coast, East Antarctica. Mar Ecol Prog Ser 410:269–282

    Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press, Oxford

    Google Scholar 

  • Wilson EA (1907) Aves. Brit Natl Antarct Exp (1901-04) Rpt 2:1–21

  • Wilson RP, Culik B, Coria NR, Adelung D, Spairani HJ (1989) Activity rhythms in Adélie Penguins at Hope Bay, Antarctica: determination and control. Polar Biol 10:161–165

    Google Scholar 

  • Wilson RP, Puetz K, Bost CA, Culik BM et al (1993) Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candlelight? Mar Ecol Prog Ser 94:101–104

    Google Scholar 

  • Wirsing AJ, Ripple WJ (2010) A comparison of shark and wolf research reveals similar behavioral responses by prey. Front Ecol Envir. doi:10.1890/090226

  • Wirsing AJ, Heithaus MR, Dill LM (2007) Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153:1031–1040

    PubMed  Google Scholar 

  • Wirsing A, Heithaus MR, Frid A, Dill LM (2008) Seascapes of fear: evaluating sublethal predator effects experienced and generated by marine mammals. Mar Mamm Sci 24:1–15

    Google Scholar 

  • Woehler EJ (1993) The distribution and abundance of Antarctic and Subantarctic penguins. Sci Comm Antarc Res, Cambridge

    Google Scholar 

  • Ydenberg R C, Butler RW, Lank DB, Guglielmo CG and others (2002) Trade-offs, condition dependence and stopover site selection by migrating sandpipers. J Avian Biol 33:47–55

    Google Scholar 

  • Ydenberg RC, Butler RW, Lank DB, Smith BD, Ireland J (2004) Western sandpipers have altered migration tactics as peregrine falcon populations have recovered. Proc Roy Soc Lond B 271:1263–1269

    Google Scholar 

  • Ydenberg RC, Butler RW, Lank DB (2007) Effects of predator landscapes on the evolutionary ecology of routing, timing and molt by long-distance migrants. J Avian Biol 38:523–529

    Google Scholar 

  • Zimmer I, Wilson RP, Gilbert C, Beaulieu M, Ancel A, Plötz J (2007) Foraging movements of emperor penguins at Pointe Géologie, Antarctica. Polar Biol 31:229–243

    Google Scholar 

  • Zimmer I, Wilson RP, Beaulieu M, Ancel A, Plötz J (2008) Seeing the light: depth and time restrictions in the foraging capacity of emperor penguins at Pointe Géologie, Antarctica. Aquatic Biol 2:217–226

    Google Scholar 

  • Zimmer I, Wilson RP, Beaulieu M, Ropert-Coudert Y, Kato A, Ancel A, Plötz J (2010) Dive efficiency versus depth in foraging emperor penguins. Aquatic Biol 8:269–277

    Google Scholar 

Download references

Acknowledgments

This paper was written under grant OPP-0440643 from the US National Science Foundation. Logistic support was expertly supplied by the US Antarctic Research Program. This work was accomplished under Antarctic Conservation Permit ACA-2006-010, and under Institutional Animal Care Use Committee permit #878. We thank D. Karentz for supplying and helping with the radiometer deployment; and J. Eastman, R. L. Pitman, R. Hill, G. L. Kooyman, B. Wienecke, C. Barbraud, R. Ydenburg and three anonymous reviewers for very helpful information or critical comments. This is contribution 1812 of PRBO Conservation Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Ainley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainley, D.G., Ballard, G. Non-consumptive factors affecting foraging patterns in Antarctic penguins: a review and synthesis. Polar Biol 35, 1–13 (2012). https://doi.org/10.1007/s00300-011-1042-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-011-1042-x

Keywords

Navigation