Skip to main content
Log in

Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The apple (Malus × domestica Borkh.) is one of the commercially important fruit crops in the worldwide. The apple has a relatively long juvenile period (up to 4 years) and a long reproductive period between the flower initiation and the mature fruit (14–16 months), which prevent the fruit breeding. Therefore, the understanding of the flowering system is important to improve breeding efficiency in the apple. In this study, to examine the temporal and spatial expression patterns of the floral genes, MdTFL1, MdAP1 (MdMASD5), AFL2, and MdFT, we conducted in situ hybridization analysis in the apple shoot apex. In vegetative phase, MdTFL1 was expressed on the rib meristem zone. When vegetative meristem began converting into inflorescence meristem, the expression level of MdTFL1 was drastically decreased. At the early stage of inflorescence meristem, the expression levels of AFL2, MdFT, and MdAP1 were up-regulated in the leaf primordia and the upper region of cell layers on the shoot apex. In late stage, the expression levels of AFL2 and MdAP1 were up-regulated in the young floral primordia. At a more advanced stage, high expression of MdAP1 was observed in the inflorescence primordium through the inner layer of sepal primordia and the outer layer of receptacle primordia and floral axis. Our results suggest that AFL2, MdFT, and MdAP1 affect to convert from the vegetative meristem into the inflorescence meristem after the decline of MdTFL1 expression. After that, AFL2 and MdAP1 promote the formation of the floral primordia and floral organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP1 :

APETALA1

CEN :

CENTRORADIALIS

FT :

FLOWERING LOCUS T

LFY :

LEAFY

Md :

Malus × domestica

PEBP:

Phosphatidylethanolamine binding protein

RT–PCR:

Reverse transcription-polymerase chain reaction

SOC1 :

SUPRESSOR OF OVEREXPRESSION OF CONSTANS1

TFL1 :

TERMINAL FLOWER1

UTR:

Untranslational region

References

  • Bäurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:647–655

    Article  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell (Suppl) 16:S18–S31

    CAS  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Dennis F Jr (2003) Flowering, pollination and fruit set and development. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CAB International, Oxon

    Google Scholar 

  • Esumi T, Tao R, Yonemori K (2005) Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251–263

    Article  PubMed  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot (Lond) 92:199–206

    Article  Google Scholar 

  • Gustafson-Brown C, Savidge B, Yanofsky MF (1994) Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76:131–143

    Article  PubMed  CAS  Google Scholar 

  • Gyllenstrand N, Clapham D, Källman T, Lagercrantz U (2007) A Norway Spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiol 144:248–257

    Article  PubMed  CAS  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation, and rejuvenility in woody plants. Hortic Rev 7:109–155

    Google Scholar 

  • Hättasch C, Flachowsky H, Kapturska D, Hanke M-V (2008) Isolation of flowering genes and seasonal changes in their transcript levels related to flower induction and initiation in apple (Malus domestica). Tree Physiol 28:1459–1466

    PubMed  Google Scholar 

  • Huala E, Sussex IM (1993) Determination and cell interactions in reproductive meristems. Plant Cell 5:1157–1165

    Article  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell (Suppl) 16:S1–S17

    CAS  Google Scholar 

  • Jaeger KE, Wigge PA (2007) FT protein acts as a long-range signal in Arabidopsis. Curr Biol 17:1050–1054

    Article  PubMed  CAS  Google Scholar 

  • Kotoda N, Wada M (2005) MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 168:95–104

    Article  CAS  Google Scholar 

  • Kotoda N, Wada M, Komori S, Kidou S, Abe K, Masuda T, Soejima J (2000) Expression pattern of homologues of floral meristem identity genes LFY and AP1 during flower development in apple. J Am Soc Hortic Sci 125:398–403

    CAS  Google Scholar 

  • Kotoda N, Wada M, Kusaba S, Kano-Murakami Y, Masuda T, Soejima J (2002) Overexpression of MdMADS5, an APETALA1-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci 162:679–687

    Article  CAS  Google Scholar 

  • Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci 131:74–81

    CAS  Google Scholar 

  • Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S-I, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K (2010) Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol 51:561–575

    Article  PubMed  CAS  Google Scholar 

  • Mathieu J, Warthmann N, Kuttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Medford JI (1992) Vegetative apical meristems. Plant Cell 4:1029–1039

    Article  PubMed  Google Scholar 

  • Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol 50:394–412

    Article  PubMed  CAS  Google Scholar 

  • Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46:292–299

    Article  PubMed  CAS  Google Scholar 

  • Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645–1658

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Bradley DJ, Coen ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    PubMed  CAS  Google Scholar 

  • Ruonala R, Rinne PLH, Kangasjarvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20:59–74

    Article  PubMed  CAS  Google Scholar 

  • Szankowski I, Waidmann S, El-Din Saad Omar A, Flachowsky H, Hättasch C, Hanke M-V (2009) RNAi-silencing of MdTFL1 induces early flowering in apple. Acta Hortic 839:633–636

    CAS  Google Scholar 

  • Vijayraghavan U, Prasad K, Meyerowitz E (2005) Specification and maintenance of the floral meristem: interactions between positively-acting promoters of flowering and negative regulators. Curr Sci 89:1835–1841

    Google Scholar 

  • Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Ureshino A, Tanaka N, Komori S, Takahashi S, Kudo K, Bessho H (2009) Anatomical analysis by two approaches ensures the promoter activities of apple AFL genes. Jpn J Soc Hort Sci 78:32–39

    Article  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Yao JL, Dong YH, Kvarnheden A, Morris B (1999) Seven MADS-box genes in apple are expressed in different parts of the fruit. J Am Soc Hortic Sci 124:8–13

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid (No. 15208004) from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Wada.

Additional information

Communicated by F. Sato.

N. Mimida, A. Ureshino, N. Tanaka and N. Shigeta have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mimida, N., Ureshino, A., Tanaka, N. et al. Expression patterns of several floral genes during flower initiation in the apical buds of apple (Malus × domestica Borkh.) revealed by in situ hybridization. Plant Cell Rep 30, 1485–1492 (2011). https://doi.org/10.1007/s00299-011-1057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1057-3

Keywords

Navigation