Skip to main content

Advertisement

Log in

Progress studies of drought-responsive genes in rice

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Rice (Oryza sativa L.), one of the most agronomically important crops, supplies staple food for more than half of the world’s population, especially those living in developing countries. The intensively increasing world population has put a great burden on rice production. Drought as one of the major limiting factors for rice productivity has challenged researchers to improve both the water management system and rice characteristics. Biotechnology has assisted researchers to identify genes that are responsive toward drought. This review consolidates the recent studies that expose a number of drought-responsive genes in rice, which are potential candidates for development of improved drought-tolerant transgenic rice cultivars. In addition, examples are provided of how various drought-responsive genes, such as transcription factor and protein kinase encoding genes, were explored to engineer rice plants for enhanced drought tolerance using transgenic approach. Furthermore, the involvement of various phytohormones in regulation of drought response as well as the complexity of drought-responsive networks, which is indicated by the crosstalks with other stress-responsive networks such as cold and salt stresses, will be discussed. It is hoped that by understanding how rice responds to drought, crop performance can be stabilized and protected under water deficit conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Tamogami S, Iwahashi H, Agrawal VP, Rakwal R (2003) Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiol Biochem 41:355–361

    Article  CAS  Google Scholar 

  • Alexandersson E, Danielson JA, Rade J, Moparthi VK, Fontes M, Kjellbom P, Johanson U (2010) Transcriptional regulation of aquaporins in accessions of Arabidopsis in response to drought stress. Plant J 61:650–660

    Article  CAS  PubMed  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA 101:9909–9914

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Meng QP, Zhang Y, Xia M, Wang XP (2008) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Cheong YH, Moon BC, Kim JK et al (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Howe GA (2009) A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–145

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R–2, increases tolerance to freezing, drought and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  Google Scholar 

  • Dardick C, Chen J, Richter T, Ouyang S, Ronald P (2007) The rice kinase database. A phylogenomic database for the rice kinome. Plant Physiol 143:579–586

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signalings and regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Kohl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Horak J, Chaban C et al (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491

    Article  PubMed  CAS  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing Xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice. Oryza sativa L., encode transcription activators that function in drought-, high salt- and cold-responsive gene expression. Plant J 3:751–773

    Article  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Chico JM, Solano R (2009) The jasmonate pathway: the ligand, the receptor and the core signaling module. Curr Opin Plant Biol 12:539–547

    Article  CAS  PubMed  Google Scholar 

  • Fu SF, Chou WC, Huang DD, Huang HJ (2002) Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol 43:958–963

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the point of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Gao Z, He X, Zhao B et al (2010) Overexpressing a putative aquaporin gene from whean, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    Article  CAS  PubMed  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Zhang J, Li H et al (2010) Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways into tomato. J Exp Bot 61:3563–3575

    Article  CAS  PubMed  Google Scholar 

  • Gorantla M, Babu PR, Lachagari VBR, Reddy AMM, Wusirika R, Bennetzen JL, Reddy AR (2007) Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot 58:253–265

    Article  CAS  PubMed  Google Scholar 

  • Guo A, He K, Liu D, Bai S, Gu X, Wei L, Luo J (2005) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Wang ZY, Lin H et al (2006) Expression and functional analysis of the rice plasma membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  CAS  PubMed  Google Scholar 

  • Hobo T, Kowyama Y, Hattori T (1999) A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc Natl Acad Sci USA 96:15348–15353

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Lee Y, Cho JI et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  CAS  Google Scholar 

  • Hou X, Xie K, Yao J, Qi Z, Xiong L (2009) A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA 106:6410–6415

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  PubMed  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xiao B, Xiong L (2007) Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 226:73–85

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Sun SJ, Xu DQ et al (2009a) Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochem Biophys Res Commun 389:556–561

    Article  CAS  PubMed  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009b) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  CAS  PubMed  Google Scholar 

  • Hundertmark M, Hincha DK (2008) Late embryogenesis abundant (LEA) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–139

    Article  PubMed  CAS  Google Scholar 

  • Islam MA, Du H, Ning J, Ye H, Xiong L (2009) Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol 70:443–456

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Tyagi AK, Khurana JP (2006) Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol 6:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  Google Scholar 

  • Jin XF, Xiong AS, Peng RH, Liu JG, Gao F, Chen JM, Yao QH (2009) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep 43:34–39

    Google Scholar 

  • Jing C, Wan J, Hua J, Gao X, Wang P, Xi J, Xu Z (2006) Cloning and expression analysis of OsNADPH1 gene from rice in drought stress response. Rice Sci 13:149–154

    Google Scholar 

  • Kanneganti V, Gupta AK (2008) Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol 66:445–462

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Agrawal GK, Rakwal R et al (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Biochem Biophys Res Commun 300:868–876

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Yamamoto S, Minami H, Kagaya Y, Hattori T (2004) Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16:1163–1177

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Murata M, Minami H et al (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44:939–949

    Article  CAS  PubMed  Google Scholar 

  • Koo SC, Moon BC, Kim JK et al (2009) OsBWMK1 mediates SA-dependent defense responses by activating the transcription factor OsWRKY33. Biochem Biophys Res Commun 387:365–370

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Rao KP, Sharma P, Sinha AK (2008) Different regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem 46:891–897

    Article  CAS  PubMed  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K et al (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of abiotic stress-inducible dehydrin gene OsDhn1 in rice (Oryza sativa L.). Mol Cells 19:212–218

    CAS  PubMed  Google Scholar 

  • Li GW, Zhang MH, Cai WM, Sun WN, Su WA (2008) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Wu YJ, Ruan XM, Li B, Zhu L, Wang H, Li XB (2009) Expression of three cotton genes encoding the PIP proteins are regulated in root development and in response to stresses. Plant Cell Rep 28:291–300

    Article  CAS  PubMed  Google Scholar 

  • Lian HL, Yu X, Ye Q et al (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong K (2007) Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 226:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang H, Yang Y et al (2008) Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol 68:17–30

    Article  CAS  PubMed  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol 51:825–833

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Gao C, Zheng X, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229:605–615

    Article  CAS  PubMed  Google Scholar 

  • Maclean JL, Dave DC, Hardy B, Hettel GP (2002) Rice almanac. CAB International, Wallingford

    Google Scholar 

  • Mahdieh M, Mostajeran A, Horie T, Katsuhara M (2008) Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants. Plant Cell Physiol 49:801–813

    Article  CAS  PubMed  Google Scholar 

  • Malz S, Sauter M (1999) Expression of two PIP genes in rapidly growing internodes of rice is not primarily controlled by meristem activity or cell expansion. Plant Mol Biol 40:985–995

    Article  CAS  PubMed  Google Scholar 

  • Manavalan LP, Guttikonda SK, Tran L-SP, Nguyen HT (2009) Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol 50:1260–1276

    Article  CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Mizoi J, Yoshida T et al (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Mitra J (2001) Genetics and genetic improvement of drought resistance in crop plants. Curr Sci 80:758–763

    CAS  Google Scholar 

  • Miyata S, Urao T, Yamaguchi-Shinozaki K, Shinozaki K (1998) Characterization of genes for two-component phosphorelay mediators with a single HPt domain in Arabidopsis thaliana. FEBS Lett 437:11–14

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2010) Genome-wide analysis of two-component systems and prediction of stress-reponsive two-component system members in soybean. DNA Res 17(5):303–324

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc finger protein gene from rice confers tolerance to cold, dehydration and salt stress in transgenic tobacco. Proc Natl Acad Sci USA 101:6309–6314

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa H, Ohmiya K, Hattori T (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J 9:217–227

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Tran L-SP, Nguyen DV et al (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Fujita Y, Kanamori N et al (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50:1345–1363

    Article  CAS  PubMed  Google Scholar 

  • Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008) Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol 146:333–350

    Article  CAS  PubMed  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P et al (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL (2006) Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. Plant Physiol 142:380–397

    Article  CAS  PubMed  Google Scholar 

  • Peremarti A, Bassie L, Zhu C, Christou P, Capell T (2010) Molecular characterization of arginine decarboxylase gene family in rice. Transgenic Res 19:785–797

    Article  CAS  PubMed  Google Scholar 

  • Pospisilova J, Batkova P (2004) Effects of pre-treatments with abscisic acid and/or benzyladenine on gas exchange of French bean, sugar beet, and maize leaves during water stress and after rehydration. Biol Plant 48:395–399

    Article  CAS  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travnickova A, Batkova P (2005) Interaction between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plant 49:533–540

    Article  CAS  Google Scholar 

  • Qin X, Zeevaart JAD (2002) Overexpressio of 9-cis-epozycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance. Plant Physiol 128:544–551

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  Google Scholar 

  • Rabello AR, Guimaraes C, Rangel PHN et al (2008) Identification of drought-responsive genes in roots of upland rice (Oryza sativa L.). BMC Genomics 9:485–498

    Article  PubMed  CAS  Google Scholar 

  • Ramamoorthy R, Jiang S-Y, Kumar N, Venkatesh PN (2008) A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol 49:865–879

    Article  CAS  PubMed  Google Scholar 

  • Reyna NS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol Plant Microbe Interact 19:530–540

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Yang Y (2007) Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol 49:751–759

    Article  CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yokoya S (2008) Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep 27:329–334

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Doi K, Hwang I et al (2007) Nomenclature for two-component signaling elements of rice. Plant Physiol 143:555–557

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    Article  PubMed  Google Scholar 

  • Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46:1623–1634

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Song F, Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Duarte GL et al (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S et al (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Mochida K (2010) Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics 10:447–462

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2007a) Plant gene networks in osmotic stress response: from genes to regulatory networks. Methods Enzymol 428:109–128

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007b) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  CAS  PubMed  Google Scholar 

  • Tran L-SP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010a) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39

    Google Scholar 

  • Tran L-SP, Shinozaki K, Yamaguchi-Shinozaki K (2010b) Role of cytokinin-responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5:148–150

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T et al (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T et al (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  PubMed  Google Scholar 

  • Urao T, Yakubov B, Yamaguchi-Shinozaki K, Shinozaki K (1998) Stress-responsive expression of genes for two-component response regulator-like proteins in Arabidopsis thaliana. FEBS Lett 427:175–178

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    Article  CAS  PubMed  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The TIFY family previously known as ZIM. Trends Plant Sci 12:239–244

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57:201–212

    Article  CAS  PubMed  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Zhu HB, Jin GL, Liu HL, Wu WR, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Wang Q, Guan Y, Yu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  CAS  PubMed  Google Scholar 

  • Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Schmuling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Goodwin SM, Xiao Y et al (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2007) Involvement of polyamines in the drought resistance of rice. J Exp Bot 58:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling H-Q, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009a) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Wang L, Xie W, Wan B, Li X, Lin Y (2009b) Expression of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. spp. indica). Plant Mol Biol 70:311–325

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Ligang C, Liping Z, Diqiu Y (2010) Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis. J Biosci 35:459–471

    Article  PubMed  Google Scholar 

  • Yue B, Xue W, Xiong L et al (2006) Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci USA 104:16402–16409

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Hu Y, Chong K, Wang T (2010) ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot 105:401–409

    Article  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Fu J, Gou M et al (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Xu Y, Li J, Yang L, Li J-Y (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol 39:595–606

    CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, Jiao Y et al (2007) Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf and panicle. Plant Mol Biol 63:591–608

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in Tran’s lab is supported by Grants-in-Aid (Start-up) for Scientific Research (No. M36-57000) from Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Start-up Support grant (No. M36-57000) from the RIKEN Yokohama Institute Director Discretionary Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lam-Son Phan Tran.

Additional information

Communicated by R. Reski.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadiarto, T., Tran, LS.P. Progress studies of drought-responsive genes in rice. Plant Cell Rep 30, 297–310 (2011). https://doi.org/10.1007/s00299-010-0956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0956-z

Keywords

Navigation