Skip to main content
Log in

Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Phylum Euglenozoa comprises three groups of eukaryotic microbes (kinetoplastids, diplonemids, and euglenids), the mitochondrial (mt) genomes of which exhibit radically different modes of organization and expression. Gene fragmentation is a striking feature of both euglenid and diplonemid mtDNAs. To rationalize the emergence of these highly divergent mtDNA types and the existence of insertion/deletion RNA editing (in kinetoplastids) and trans-splicing (in diplonemids), we propose that in the mitochondrion of the common evolutionary ancestor of Euglenozoa, small expressed gene fragments promoted a rampant neutral evolutionary pathway. Interactions between small antisense transcripts of these gene fragments and full-length transcripts, assisted by RNA-processing enzymes, permitted the emergence of RNA editing and/or trans-splicing activities, allowing the system to tolerate indel mutations and further gene fragmentation, respectively, and leading to accumulation of additional mutations. In this way, dramatically different mitochondrial genome structures and RNA-processing machineries were able to evolve. The paradigm of constructive neutral evolution acting on the widely different mitochondrial genetic systems in Euglenozoa posits the accretion of initially neutral molecular interactions by genetic drift, leading inevitably to the observed ‘irremediable complexity’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adl S, Simpson AGB, Farmer MA, Andersen RA et al (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451

    Article  PubMed  Google Scholar 

  • Benne R (1990) RNA editing in trypanosomes—is there a message? Trends Genet 6:177–181

    Article  PubMed  CAS  Google Scholar 

  • Blom D, de Haan A, van den Berg M, Sloof P, Jirků M, Lukeš J, Benne R (1998) RNA editing in the free-living bodonid Bodo saltans. Nucl Acids Res 26:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (1997) Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. TIG 13:6–9

    Article  PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268

    Article  PubMed  CAS  Google Scholar 

  • Deschamps P, Lara E, Marande W, López-García P, Ekelund F, Moreira D (2011) Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol Evol 28:53–58

    Article  PubMed  CAS  Google Scholar 

  • Flegontov P, Lai DH, Jirků M, Janouškovec J, Oborník M, Keeling PJ, Lukeš J (submitted) The mitochondrial genome of Chromera velia encodes a single conserved gene

  • Gao G, Kapushoc ST, Simpson AM, Thiemann OH, Simpson L (2001) Guide RNAs of the recently isolated LEM125 strain of Leishmania tarentolae: an unexpected complexity. RNA 7:1335–1347

    Article  PubMed  CAS  Google Scholar 

  • Golden DE, Hajduk SL (2005) The 3′-untranslated region of cytochrome oxidase II mRNA functions in RNA editing of African trypanosomes exclusively as a cis guide RNA. RNA 11:29–37

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolittle WF (2010) Irremediable complexity? Science 330:920–921

    Article  PubMed  CAS  Google Scholar 

  • Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ (2009) Phylogenetic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864

    Article  PubMed  CAS  Google Scholar 

  • Horton TL, Landweber LF (2002) Rewriting the information in DNA: RNA editing in kinetoplastids and myxomycetes. Curr Opin Microbiol 5:620–626

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Leander BS, Lukes J (2010) Reply to Speijer et al.: Does complexity necessarily arise from selective advantage? Proc Natl Acad Sci USA 107:E26

    Article  CAS  Google Scholar 

  • Kiethega GN, Turcotte M, Burger G (2011) Evolutionary conserved cox1 trans-splicing without cis-motifs. Mol Biol Evol. doi:10.1093/molbev/msr075

  • Kolesnikov AA, Merzliak EM, Bessolitsyna EA, Fediakov AV, Schonian G (2003) Reduction of the edited domain of the mitochondrial A6 gene for ATPase subunit 6 in Trypanosomatidae. Mol Biol (Mosk) 37:637–642

    Article  CAS  Google Scholar 

  • Koonin EV (2009) Darwinian evolution in the light of genomics. Nucl Acids Res 37:1011–1034

    Article  PubMed  CAS  Google Scholar 

  • Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J (2008) Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci USA 105:1999–2004

    Article  PubMed  CAS  Google Scholar 

  • Landweber LF, Gilbert W (1993) RNA editing as a source of genetic variation. Nature 363:179–182

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT (2005) Fellowship of the rings: the replication of kinetoplast DNA. Trends Parasitol 21:363–369

    Article  PubMed  CAS  Google Scholar 

  • Lukeš J, Arts GJ, van den Burg J, de Haan A, Opperdoes F, Sloof P, Benne R (1994) Novel pattern of editing regions in mitochondrial transcripts of the cryptobiid Trypanoplasma borreli. EMBO J 13:5086–5098

    PubMed  Google Scholar 

  • Lukeš J, Jirků M, Avliyakulov N, Benada O (1998) Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J 17:838–846

    Article  Google Scholar 

  • Lukeš J, Guilbride DL, Votýpka J, Zíková A, Benne R, Englund PT (2002) Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502

    Article  PubMed  Google Scholar 

  • Lukeš J, Hashimi H, Zíková A (2005) Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 48:277–299

    Article  PubMed  Google Scholar 

  • Lukeš J, Leander BS, Keeling PJ (2009) Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci USA 106:9963–9970

    Article  PubMed  Google Scholar 

  • Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life, accepted

  • Lun ZR, Lai DH, Li FJ, Lukeš J, Ayala FJ (2010) Trypanosoma brucei: two steps to spread out from Africa. Trends Parasitol 26:424–427

    Article  PubMed  Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci USA 104:8597–8604

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415

    Article  PubMed  CAS  Google Scholar 

  • Marande W, Lukeš J, Burger G (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Maslov DA, Avila HA, Lake JA, Simpson L (1994) Evolution of RNA editing in kinetoplastid protozoa. Nature 368:345–348

    Article  PubMed  CAS  Google Scholar 

  • Moreira D, López-García P, Vickerman K (2004) An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea. Int J Syst Evol Microbiol 54:1861–1875

    Article  PubMed  CAS  Google Scholar 

  • Nash EA, Barbrook AC, Edwards-Stuart RK, Bernhardt K, Howe CJ, Nisbet RE (2007) Organization of the mitochondrial genome in the dinoflagellate Amphidinium carterae. Mol Biol Evol 24:1528–1536

    Article  PubMed  CAS  Google Scholar 

  • Nash EA, Nisbet RER, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335

    Article  PubMed  CAS  Google Scholar 

  • Nawathean P, Maslov DA (2000) The absence of genes for cytochrome c oxidase and reductase subunits in maxicircle kinetoplast DNA of the respiration-deficient plant trypanosomatid Phytomonas serpens. Curr Genet 38:95–103

    Article  PubMed  CAS  Google Scholar 

  • Ochsenreiter T, Hajduk SL (2006) Alternative editing of cytochrome c oxidase III mRNA in trypanosome mitochondria generates protein diversity. EMBO Rep 7:1128–1133

    Article  PubMed  CAS  Google Scholar 

  • Ochsenreiter T, Hajduk SL (2007) The function of RNA editing in trypanosomes. In: Goringer HU (ed) RNA editing. Springer-Verlag, Berlin-Heidelberg, pp 181–197

    Google Scholar 

  • Ochsenreiter T, Cipriano M, Hajduk SL (2008) Alternative mRNA editing in trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One 3:e1566

    Article  PubMed  Google Scholar 

  • Roy J, Faktorová D, Lukeš J, Burger G (2007) Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158:385–396

    Article  PubMed  CAS  Google Scholar 

  • Savill NJ, Higgs PG (1999) A theoretical study of random segregation of minicircles in trypanosomatids. Proc Biol Sci 266:611–620

    Article  PubMed  CAS  Google Scholar 

  • Schnaufer A (2010) Evolution of dyskinetoplastic trypanosomes: how, and how often? Trends Parasitol 26:557–558

    Article  PubMed  Google Scholar 

  • Schnaufer A, Domingo GJ, Stuart K (2002) Natural and induced dyskinetoplastic trypanosomatids: how to live without mitochondrial DNA. Int J Parasitol 32:1071–1084

    Article  PubMed  CAS  Google Scholar 

  • Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K (2005) The F1–ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J 24:4029–4040

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Maslov DA (1999) Evolution of the U-insertion/deletion RNA editing in mitochondria of kinetoplastid protozoa. Ann NY Acad Sci 870:190–205

    Article  PubMed  CAS  Google Scholar 

  • Simpson AG, Roger AJ (2004) Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 30:201–212

    Article  PubMed  CAS  Google Scholar 

  • Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA (2000) Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci USA 97:6986–6993

    Article  PubMed  CAS  Google Scholar 

  • Speijer D (2006) Is kinetoplastid pan-editing the result of an evolutionary balancing act? IUBMB Life 58:91–96

    Article  PubMed  CAS  Google Scholar 

  • Speijer D (2007) Evolutionary aspects of RNA editing. In: Goringer HU (ed) RNA editing. Springer-Verlag, Berlin-Heidelberg, pp 199–227

    Google Scholar 

  • Speijer D (2010) Constructive neutral evolution cannot explain current kinetoplastid panediting patterns. Proc Natl Acad Sci USA 107:E25

    Article  PubMed  CAS  Google Scholar 

  • Speijer D (2011) Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity. BioEssays. doi:10.1002/bies.201100010

  • Spencer DF, Gray MW (2011) Ribosomal RNA genes in Euglena gracilis mitochondrial DNA: fragmented genes in a seemingly fragmented genome. Mol Genet Genomics 285:19–31

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181

    Article  PubMed  CAS  Google Scholar 

  • Stuart K, Allen TE, Heidmann S, Seiwert SD (1997) RNA editing in kinetoplastid protozoa. Microbiol Mol Biol Rev 61:105–120

    PubMed  CAS  Google Scholar 

  • Tessier LH, van der Speck H, Gualberto JM, Grienenberger JM (1997) The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications. Curr Genet 31:208–213

    Article  PubMed  CAS  Google Scholar 

  • Thiemann OH, Maslov DA, Simpson L (1994) Disruption of RNA editing in Leishmania tarentolae by the loss of minicircle-encoded guide RNA genes. EMBO J 13:5689–5700

    PubMed  CAS  Google Scholar 

  • Vlček C, Marande W, Teijeiro S, Lukeš J, Burger G (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucl Acids Res 39:979–988

    Article  PubMed  Google Scholar 

  • von Haeseler A, Blum B, Simpson L, Sturm N, Waterman MS (1992) Computer methods for locating kinetoplastid cryptogenes. Nucl Acids Res 20:2717–2724

    Article  Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. BioEssays 31:237–245

    Article  PubMed  CAS  Google Scholar 

  • Yasuhira S, Simpson L (1996) Guide RNAs and guide RNA genes in the cryptobiid kinetoplastid protozoan, Trypanoplasma borreli. RNA 2:1153–1160

    PubMed  CAS  Google Scholar 

  • Yasuhira S, Simpson L (1997) Phylogenetic affinity of mitochondria of Euglena gracilis and kinetoplastids using cytochrome oxidase I and hsp60. J Mol Evol 44:341–347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Lukeš.

Additional information

Communicated by H. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flegontov, P., Gray, M.W., Burger, G. et al. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?. Curr Genet 57, 225–232 (2011). https://doi.org/10.1007/s00294-011-0340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-011-0340-8

Keywords

Navigation